Two mutually perpendicular simple harmonic vibrations of the same frequency superimpose on each other. The amplitude of the two vibrations is different and they are different from each other in phase. The resultant of superposition is
1. Parabola
2. Straight line
3. Elliptical
4. Circular
A ring of radius R is hung by a nail on its periphery such that it can freely rotate in its vertical plane. The time period of the ring for small oscillations is:
1.
2.
3.
4.
1. | Zero | 2. | \(30~\text{J}\) |
3. | \(20~\text{J}\) | 4. | \(40~\text{J}\) |
The equation of S.H.M. is given as x = Asin(0.02), where t is in seconds. With what time period the potential energy oscillates?
1. 200 s
2. 100 s
3. 50 s
4. 10 s
In a stationary lift, a spring-block system oscillates with a frequency \(f.\) When the lift accelerates, the frequency becomes \(f'\) . Then:
1. | \(f'>f\) |
2. | \(f'<f\) |
3. | \(f'=f\) |
4. | any of the above depending on the value of the acceleration of the lift. |
1. \(\frac{\pi}{2}~\text{s}\)
2. \(\frac{1}{2}~\text{s}\)
3. \(\pi~\text{s}\)
4. \(1~\text{s}\)
1. | \(3~\text{cm}\) | 2. | \(3.5~\text{cm}\) |
3. | \(4~\text{cm}\) | 4. | \(5~\text{cm}\) |
The equation of a SHM is given as , where \(\mathrm t\) is in seconds and \(\mathrm x\) in meters. During a complete cycle, the average speed of the oscillator is:
1. zero
2. \(10\) m/s
3. \(20\) m/s
4. \(40\) m/s
The equation of a simple harmonic oscillator is given as , where t is in seconds. The frequency with which kinetic energy oscillates is
1. 5 Hz
2. 10 Hz
3. 20 Hz
4. 40 Hz