Two equations of SHM are \(y_1 = a\sin(\omega t - \alpha)~\text{and}~y_2= b\cos(\omega t-\alpha).\) The phase difference between the two is:
1. \(0^\circ\)
2. \(\alpha^\circ\)
3. \(90^\circ\)
4. \(180^\circ\)

Subtopic:  Simple Harmonic Motion |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A ring of radius R is hung by a nail on its periphery such that it can freely rotate in its vertical plane. The time period of the ring for small oscillations is:

1.  T = 2πRg

2.  T = πRg

3.  T = 2π2Rg

4.  T = 2π3R5g

Subtopic:  Simple Harmonic Motion |
 58%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

If the potential energy \(U\) \((\text{in J})\) of a body executing SHM is given by \(U = 20+ 10(\sin^2 100\pi t),\) then the minimum potential energy of the body will be:
1. Zero 2. \(30~\text{J}\)
3. \(20~\text{J}\) 4. \(40~\text{J}\)
Subtopic:  Energy of SHM |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The equation of S.H.M. is given as x = Asin(0.02πt), where t is in seconds. With what time period the potential energy oscillates? 

1.  200 s

2.  100 s

3.  50 s

4.  10 s

Subtopic:  Energy of SHM |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a stationary lift, a spring-block system oscillates with a frequency \(f.\) When the lift accelerates, the frequency becomes \(f'\) . Then:

1. \(f'>f\)
2. \(f'<f\)
3. \(f'=f\)
4. any of the above depending on the value of the acceleration of the lift.
Subtopic:  Spring mass system |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The kinetic energy \((K)\) of a simple harmonic oscillator varies with displacement \((x)\) as shown. The period of the oscillation will be: (mass of oscillator is \(1\) kg)

                     
1. \(\frac{\pi}{2}~\text{s}\)
2. \(\frac{1}{2}~\text{s}\)
3. \(\pi~\text{s}\)
4. \(1~\text{s}\)

Subtopic:  Energy of SHM |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The equation of an SHM is given as \(y = 3\sin\omega t+ 4\cos \omega t\) where \(y\) is in centimeters. The amplitude of the SHM will be?
1. \(3~\text{cm}\) 2. \(3.5~\text{cm}\)
3. \(4~\text{cm}\) 4. \(5~\text{cm}\)
Subtopic:  Linear SHM |
 90%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The equation of a SHM is given as x = 5sin4πt + π3, where \(\mathrm t\) is in seconds and \(\mathrm x\) in meters. During a complete cycle, the average speed of the oscillator is:
1. zero

2. \(10\) m/s 

3. \(20\) m/s

4. \(40\) m/s

Subtopic:  Simple Harmonic Motion |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The equation of a simple harmonic oscillator is given as y = Asin20πt + π3, where t is in seconds. The frequency with which kinetic energy oscillates is

1.  5 Hz

2.  10 Hz 

3.  20 Hz

4.  40 Hz

Subtopic:  Energy of SHM |
 64%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

What is the period of oscillation of the block shown in the figure?

1. \(2\pi \sqrt{\dfrac{M}{k}}\) 2. \(2\pi \sqrt{\dfrac{4M}{k}}\)
3. \(\pi \sqrt{\dfrac{M}{k}}\) 4. \(2\pi \sqrt{\dfrac{M}{2k}}\)
Subtopic:  Combination of Springs |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch