A rectangular film of liquid is extended from \((4~\text{cm} \times2 ~\text{cm})\) to \((5 ~\text{cm}\times 4 ~\text{cm})\). If the work done is \(3 \times 10^{-4}~\text{J},\) the value of the surface tension of the liquid is:
1. \(0.25\) N/m
2. \(0.125\) N/m
3. \(0.2\) N/m
4. \(8.0\) N/m
Two non-mixing liquids of densities and \(n 𝜌 (n>1)\) are put in a container. The height of each liquid is \(h.\) A solid cylinder floats with its axis vertical and length \(pL (𝑝 < 1)\) in the denser liquid. The density of the cylinder is \(d.\) The density \(d\) is equal to:
1. \({[2+(n+1)p}] 𝜌\)
2. \([{2+(n-1)p}] 𝜌\)
3. \([{1+(n-1)p}] 𝜌\)
4. \([{1+(n+1)p}] 𝜌\)
A wind with speed \(40~\text{m/s}\) blows parallel to the roof of a house. The area of the roof is \(250~\text{m}^2\). Assuming that the pressure inside the house is atmospheric pressure, the force exerted by the wind on the roof and the direction of the force will be: \(\left(\rho_{\text{air}}= 1.2~\text{kg/m}^3 \right)\)
1. \(4.8\times 10^{5}~\text{N}, ~\text{downwards}\)
2. \(4.8\times 10^{5}~\text{N}, ~\text{upwards}\)
3. \(2.4\times 10^{5}~\text{N}, ~\text{upwards}\)
4. \(2.4\times 10^{5}~\text{N}, ~\text{downwards}\)
Water rises to a height h in capillary tube . If the length of capillary tube above the surface of water is made less than h, then
(1) water rises upto the tip of capillary tube and then starts overflowing like a fountain
(2) water rises upto the top of capillary tube and stays there without overflowing
(3) water rises upto a point a little below the top and stays there
(4) water does not rise at all
Which two of the following five physical parameters have the same dimensions ?
(1) energy density
(2) refractive index
(3) dielectric constant
(4) Young's modulus
(5) magnetic field
1. 2 and 4
2. 3 and 5
3. 1 and 4
4. 1 and 5
Two bodies are in equilibrium when suspended in water from the arms of a balance. The mass of one body is \(36~\text g\) and its density is \(9~\text{g/cm}^3.\) If the mass of the other is \(48~\text g,\) its density in \((\text{g/cm}^3)\) will be:
1. \(\frac{4}{3}\)
2. \(\frac{3}{2}\)
3. \(3\)
4. \(5\)
An inverted bell lying at the bottom of a lake 47.6 m deep has 50 cm3 of air trapped in it. The bell is brought to the surface of the lake. The volume of the trapped air will be (atmospheric pressure = 70 cm of Hg and density of Hg = 13.6 g/cm3)
1. 350 cm3
2. 300 cm3
3. 250 cm3
4. 22 cm3
A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is 1.5 gm/cc. The pressure difference between the point P and S will be
1.
2.
3. Zero
4. Infinity
The height of a mercury barometer is 75 cm at sea level and 50 cm at the top of a hill. Ratio of density of mercury to that of air is . The height of the hill is
1. 250 m
2. 2.5 km
3. 1.25 km
4. 750 m
A body of density is counterpoised by Mg of weights of density in air of density d. Then the true mass of the body is
1. M
2.
3.
4.