A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle, the motion of the particle takes place in a plane. It follows that
(1) Its velocity is constant
(2) Its acceleration is constant
(3) Its kinetic energy is constant
(4) It moves in a straight line
Two bodies of masses 1 kg and 5 kg are dropped gently from the top of a tower. At a point 20 cm from the ground, both the bodies will have the same
(1) Momentum
(2) Kinetic energy
(3) Velocity
(4) Total energy
A particle moves under the effect of a force F = Cx from x = 0 to x = x1. The work done in the process is
(1)
(2)
(3)
(4) Zero
A cord is used to lower vertically a block of mass M by a distance d with constant downward acceleration . Work done by the cord on the block is
(1)
(2)
(3)
(4) Mgd
Two springs have their force constant as k1 and . When they are stretched by the same force
(1) No work is done in case of both the springs
(2) Equal work is done in case of both the springs
(3) More work is done in case of second spring
(4) More work is done in case of first spring
The potential energy of a certain spring when stretched through a distance ‘S’ is 10 joule. The amount of work (in joule) that must be done on this spring to stretch it through an additional distance ‘S’ will be:
(1) 30
(2) 40
(3) 10
(4) 20
A spring of force constant 800 N/m has an extension of 5cm. The work done in extending it from 5cm to 15 cm is:
(1) 16 J
(2) 8 J
(3) 32 J
(4) 24 J
A spring of spring constant 5 × 103 N/m is stretched initially by 5cm from the unstretched position. Then the work required to stretch it further by another 5 cm is
(1) 6.25 N-m
(2) 12.50 N-m
(3) 18.75 N-m
(4) 25.00 N-m
A mass of 0.5kg moving with a speed of 1.5 m/s on a horizontal smooth surface, collides with a nearly weightless spring of force constant k = 50 N/m. The maximum compression of the spring would be
(1) 0.15 m
(2) 0.12 m
(3) 1.5 m
(4) 0.5 m
A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement x is proportional to-
(1) x2
(2) ex
(3) x
(4) loge x