A nucleus emits one -particle and two particles. The resulting nucleus is:
1.
2.
3.
4.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
The mass of a \({}_{3}^{7}\mathrm{Li}\) nucleus is \(0.042\) u less than the sum of the masses of all its nucleons. The binding energy per nucleon of the \({}_{3}^{7}\mathrm{Li}\) nucleus is near:
1. \(4.6\) MeV
2. \(5.6\) MeV
3. \(3.9\) MeV
4. \(23\) MeV
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
The activity of a radioactive sample is measured as N0 counts per minute at t = 0 and N0/e counts per minute at t = 5 min. The time (in minute) at which the activity reduces to half its value is:
1.
2.
3.
4.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
In the nuclear decay given below:
the particles emitted in the sequence are:
1. | \(\beta, \alpha, \gamma \) | 2. | \(\gamma, \beta, \alpha \) |
3. | \(\beta, \gamma, \alpha \) | 4. | \(\alpha, \beta, \gamma\) |
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
1. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E / c^2\) |
2. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\) |
3. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E\) |
4. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \) |
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
In radioactive decay process, the negatively charged emitted β-particles are:
1. the electrons present inside the nucleus
2. the electrons produced as a result of the decay of neutrons inside the nucleus
3. the electrons produced as a result of collisions between atoms
4. the electrons orbiting around the nucleus
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
A nucleus has mass represented by M(A, Z). If Mp and Mn denote the mass of proton and neutron respectively and BE the binding energy, then :
1.
2.
3.
4.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
Two radioactive substances A and B have decay constants 5λ and λ respectively. At t = 0 they have the same number of nuclei. The ratio of the number of nuclei of A to those of B will be after a time interval:
1.
2.
3.
4.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
1. | \(25.8\) MeV | 2. | \(23.6\) MeV |
3. | \(19.2\) MeV | 4. | \(30.2\) MeV |
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.