1. | |
2. | |
3. | |
4. | |
1. | the motion is oscillatory but not SHM. |
2. | the motion is SHM with an amplitude . |
3. | the motion is SHM with an amplitude . |
4. | the motion is SHM with an amplitude . |
The displacement of a particle executing SHM is given by y = 0.25 (sin 200t) cm. The maximum speed of the particles is:
1. 200 cm/sec
2. 100 cm/sec
3. 50 cm/sec
4. 0.25 cm/sec
A particle undergoes SHM with a time period of 2 seconds. In how much time will it travel from its mean position to a displacement equal to half of its amplitude?
1.
2.
3.
4.
A second's pendulum is mounted in a rocket. Its period of oscillation decreases when the rocket:
1. Comes down with uniform acceleration
2. Moves around the earth in a geostationary orbit
3. Moves up with a uniform velocity
4. Moves up with the uniform acceleration
A small sphere carrying a charge ‘q’ is hanging in between two parallel plates by a string of length L. Time period of pendulum is T0. When parallel plates are charged, the electric field between the plates is E and time period changes to T. The ratio T/T0 is equal to
(1) (g+qEmg)1/2 (2) (gg+qEm)3/2
(3) (gg+qEm)1/2 (4) None of these
A particle executes linear simple harmonic motion with an amplitude of of 3 cm. When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then, its time period in seconds is
1. √5π
2.√52π
3. 4π√5
4. 2π√3
When two displacements represented by y1=asin(ωt) and y2=bcos(ωt) are superimposed,the motion is -
1. not a simple harmonic
2. simple harmonic with amplitude a/b
3. simple harmonic with amplitude a2
4. simple harmonic with amplitude (a+b)/2
A point performs simple harmonic oscillation of period T and the equation of motion is given by x= a sin .After the elapse of what fraction of the time period the velocity of the point will be equal to half to its maximum velocity?
1.
2.
3.
4
The angular velocities of three bodies in simple harmonic motion are with their respective amplitudes as . If all the three bodies have same mass and maximum velocity, then
1.
2.
3.
4.
The amplitude of a particle executing SHM is 4 cm. At the mean position the speed of the particle is 16 cm/sec. The distance of the particle from the mean position at which the speed of the particle becomes will be
1.
2.
3. 1 cm
4. 2 cm
The maximum velocity of a simple harmonic motion represented by is given by
1. 300
2.
3. 100
4.