Hydrogen bomb is based on which of the following phenomenon

(1) Nuclear fission             

(2) Nuclear fusion

(3) Radioactive decay       

(4) None of these

Subtopic:  Mass-Energy Equivalent |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The number of neutrons released when U23592 undergoes fission by absorbing n01 and Ba56144+Kr3689are formed, is 

(1) 0           

(2) 1

(3) 2         

(4) 3

Subtopic:  Mass-Energy Equivalent |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which of the following particle has similar mass to electron

(1) Proton             

(2) Neutron

(3) Positron           

(4) Neutrino

Subtopic:  Mass-Energy Equivalent |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Neutrino is a particle, which is 

(1) Charged and has spin

(2) Charged and has no spin

(3) Charge less and has spin

(4) Charge less and has no spin

Subtopic:  Mass-Energy Equivalent |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

To generate a power of 3.2 mega watt, the number of fissions of U235 per minute is
(Energy released per fission = 200MeV, 1eV=1.6×10-19 J 

(1) 6×1018        

(2) 6×1017

(3) 1017             

(4) 6×1016

Subtopic:  Nuclear Energy |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The average number of prompt neutrons produced per fission of U235 is 

(1) More than 5         

(2) 3 to 5

(3) 2 to 3                 

(4) 1 to 2

Subtopic:  Mass-Energy Equivalent |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

In an atomic bomb, the energy is released due to

(1) Chain reaction of neutrons and U92235
(2) Chain reaction of neutrons and U92288
(3) Chain reaction of neutrons and P92240
(4) Chain reaction of neutrons and U92286

Subtopic:  Mass-Energy Equivalent |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If an electron and a positron annihilate, then the energy released is:
1. \(3.2\times 10^{-13}~\text{J}\)
2. \(1.6\times 10^{-13}~\text{J}\)
3. \(4.8\times 10^{-13}~\text{J}\)
4. \(6.4\times 10^{-13}~\text{J}\)

Subtopic:  Mass-Energy Equivalent |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The energy liberated on complete fission of 1 kg of U92235 is (Assume 200 MeV energy is liberated on fission of 1 nucleus) 

(1) 8.2×1010 J                           

(2) 8.2×109 J

(3) 8.2×1013 J                           

(4) 8.2×1016 J

Subtopic:  Mass-Energy Equivalent |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The nuclear reaction H12+H12He24 (mass of deuteron = 2.0141 a.m.u. and mass of He = 4.0024 a.m.u.) is

(1) Fusion reaction releasing 24 MeV energy

(2) Fusion reaction absorbing 24 MeV energy

(3) Fission reaction releasing 0.0258 MeV energy

(4) Fission reaction absorbing 0.0258 MeV energy

Subtopic:  Mass-Energy Equivalent |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch