It is possible to hear beats from the two vibrating sources of frequency :

(1) 100 Hz and 150 Hz

(2) 20 Hz and 25 Hz

(3) 400 Hz and 500 Hz

(4) 1000 Hz and 1500 Hz

Subtopic:  Beats |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two sound waves of wavelengths 5m and 6m formed 30 beats in 3 seconds. The velocity of sound is :

(1) 300 ms–1

(2) 310 ms–1

(3) 320 ms–1

(4) 330 ms–1

Subtopic:  Beats |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two sound sources when sounded simultaneously produce four beats in 0.25 seconds. The difference in their frequencies must be :

(1) 4

(2) 8

(3) 16

(4) 1

Subtopic:  Beats |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two strings X and Y of a sitar produce a beat frequency 4 Hz. When the tension of the string Y is slightly increased the beat frequency is found to be 2 Hz. If the frequency of X is 300 Hz, then the original frequency of Y was :

(1) 296 Hz

(2) 298 Hz

(3) 302 Hz

(4) 304 Hz

Subtopic:  Beats |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two vibrating tuning forks produce progressive waves given by Y1=4sin500πt and Y2=2sin506πt. Number of beats produced per minute is :

(1) 360

(2) 180

(3) 3

(4) 60

Subtopic:  Beats |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The disc of a siren containing 60 holes rotates at a constant speed of 360 rpm. The emitted sound is in unison with a tuning fork of frequency :

(1) 10 Hz

(2) 360 Hz

(3) 216 Hz

(4) 6 Hz

Subtopic:  Standing Waves |
 57%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

The distance between the nearest node and antinode in a stationary wave is :

(1) λ

(2) λ2

(3) λ4

(4) 2λ

Subtopic:  Standing Waves |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For the stationary wave y=4sinπx15cos(96πt), the distance between a node and the next antinode is :

1. 7.5

2. 15

3. 22.5

4. 30

Subtopic:  Standing Waves |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The equation of a stationary wave is \(y = 0.8\cos\left(\frac{\pi x}{20}\right)\sin200(\pi t)\), where \(x\) is in \(\text{cm}\) and \(t\) is in \(\text{sec}.\) The separation between consecutive nodes will be:
1. \(20~\text{cm}\)
2. \(10~\text{cm}\)
3. \(40~\text{cm}\)
4. \(30~\text{cm}\)
Subtopic:  Standing Waves |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A wave represented by the given equation y=acos(kxωt) is superposed with another wave to form a stationary wave such that the point x = 0 is a node. The equation for the other wave is :

(1) y=asin(kx+ωt)

(2) y=acos(kx+ωt)

(3) y=acos(kxωt)

(4) y=asin(kxωt)

Subtopic:  Standing Waves |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch