In an RC circuit while discharging, the graph of log i versus time is as shown by the dotted line in the diagram figure, where i is the current. When the value of the resistance is doubled, which of the solid curve best represents the variation of log i versus time ?
(1) P
(2) Q
(3) R
(4) S
Three identical capacitors are given a charge Q each and they are then allowed to discharge through resistance R1, R2 and R3. Their charges, as a function of time shown in the graph below. The smallest of the three resistance is
(1) R3
(2) R2
(3) R1
(4) Cannot be predicted
The plates of a capacitor are charged to a potential difference of 320 volts and are then connected across a resistor. The potential difference across the capacitor decays exponentially with time. After 1 second the potential difference between the plates of the capacitor is 240 volts, then after 2 and 3 seconds the potential difference between the plates will be
(1) 200 and 180 V
(2) 180 and 135 V
(3) 160 and 80 V
(4) 140 and 20 V
In the given figure each plate of capacitance C has partial value of charge equal to:
1. CE
2.
3.
4.
In the figure below, what is the potential difference between the point A and B and between B and C respectively in steady state
(1)
(2)
(3)
(4)
In the circuit here, the steady state voltage across capacitor C is a fraction of the battery e.m.f. The fraction is decided by
1. R1 only
2. R1 and R2 only
3. R1 and R3 only
4. R1, R2 and R3
A capacitor of capacitance 5 μF is connected as shown in the figure. The internal resistance of the cell is 0.5 Ω. The amount of charge on the capacitor plate is?
1. 0 μC
2. 5 μC
3. 10 μC
4. 25 μC
In the circuit shown, the current through the \(4~\Omega\) resistor is \(1~\text{A}\) when the points \(P\) and \(M\) are connected to a DC voltage source. The potential difference between the points \(M\) and \(N\) is:
1. \(1.5~\text{V}\)
2. \(1.0~\text{V}\)
3. \(0.5~\text{V}\)
4. \(3.2~\text{V}\)
A cell can be balanced against 110cm and 100 cm of potentiometer wire, respectively with and without being short-circuited through a resistance of . Its internal resistance is
1. 1.0
2. 0.5
3. 2.0
4. zero
An electric kettle takes 4 A current at 220 V. How much time will it take to boil 1 kg of water from temperature C? The temperature of boiling water is C
1. 6.3 min
2. 8.4 min
3. 12.6 min
4. 4.2 min