Two bodies are in equilibrium when suspended in water from the arms of a balance. The mass of one body is \(36~\text g\) and its density is \(9~\text{g/cm}^3.\) If the mass of the other is \(48~\text g,\) its density in \((\text{g/cm}^3)\) will be:
1. \(\frac{4}{3}\)
2. \(\frac{3}{2}\)
3. \(3\)
4. \(5\)
An inverted bell lying at the bottom of a lake 47.6 m deep has 50 cm3 of air trapped in it. The bell is brought to the surface of the lake. The volume of the trapped air will be (atmospheric pressure = 70 cm of Hg and density of Hg = 13.6 g/cm3)
1. 350 cm3
2. 300 cm3
3. 250 cm3
4. 22 cm3
A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is 1.5 gm/cc. The pressure difference between the point P and S will be
1.
2.
3. Zero
4. Infinity
The height of a mercury barometer is 75 cm at sea level and 50 cm at the top of a hill. Ratio of density of mercury to that of air is . The height of the hill is
1. 250 m
2. 2.5 km
3. 1.25 km
4. 750 m
Equal masses of water and a liquid of relative density \(2\) are mixed together, then the mixture has a density of:
1. \(\dfrac{2}{3}\)
2. \(\dfrac{4}{3}\)
3. \(\dfrac{3}{2}\)
4. \(3\)
A body of density is counterpoised by Mg of weights of density in air of density d. Then the true mass of the body is
1. M
2.
3.
4.
The value of g at a place decreases by 2%. The barometric height of mercury
1. Increases by 2%
2. Decreases by 2%
3. Remains unchanged
4. Sometimes increases and sometimes decreases
A barometer kept in a stationary elevator reads \(76~\text{cm}\). If the elevator starts accelerating up, the reading will be:
1. Zero
2. Equal to \(76~\text{cm}\)
3. More than \(76~\text{cm}\)
4. Less than \(76~\text{cm}\)
A closed rectangular tank is completely filled with water and is accelerated horizontally with an acceleration a towards right. Pressure is (i) maximum at, and (ii) minimum at
1. (i) B (ii) D
2. (i) C (ii) D
3. (i) B (ii) C
4. (i) B (ii) A
A vertical \(\mathrm{U}\)-tube of uniform inner cross-section contains mercury in both its arms. A glycerin (density\(=1.3\) g/cm3) column of length \(10\) cm is introduced into one of its arms. Oil of density \(0.8\) g/cm3 is poured into the other arm until the upper surfaces of the oil and glycerin are at the same horizontal level. The length of the oil column is:
(density of mercury \(=13.6\) g/cm3)
1. \(10.4\) cm
2. \(8.2\) cm
3. \(7.2\) cm
4. \(9.6\) cm