An ideal spring with spring-constant K is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released with the spring initially un-stretched. Then the maximum extension in the spring will be:
1. 4 Mg/K 
2. 2 Mg/K
3. Mg/K 
4. Mg/2K

Subtopic:  Spring mass system |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The displacement y of a particle executing periodic motion is given by y=4cos2t/2sin1000t. This expression may be considered to be a result of the superposition of  ........... independent harmonic motions

1. Two         

2. Three

3. Four         

4. Five

Subtopic:  Simple Harmonic Motion |
 60%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle of mass m is attached to three identical springs A, B and C each of force constant k a shown in figure. If the particle of mass m is pushed slightly against the spring A and released then the time period of oscillations is -

(a) 2π2mk          (b) 2πm2k

(c) 2πmk            (d) 2πm3k

              

                 

Subtopic:  Combination of Springs |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

The graph shows the variation of displacement of a particle executing S.H.M. with time. We infer from this graph that -

          

(1) The force is zero at time T/8

(2) The velocity is maximum at time T/4

(3) The acceleration is maximum at time T

(4) The P.E. is equal to total energy at time T/4

Subtopic:  Energy of SHM |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For a particle executing S.H.M. the displacement x is given by A cos ωt. Identify the graph which represents the variation of potential energy (P.E.) as a function of time t and displacement x.

      

(a) I, III          (b) II, IV

(c) II, III         (d) I, IV

Subtopic:  Energy of SHM |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The velocity-time diagram of a harmonic oscillator is shown in the figure given below. The frequency of oscillation will be:
                

1. 25 Hz
2. 50 Hz
3. 12.25 Hz
4. 33.3 Hz

Subtopic:  Simple Harmonic Motion |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The variation of the potential energy of the harmonic oscillator is shown in the figure. The spring constant will be:
           

1. 1  × 102 N/m 2. 150 N/m
3. 0.667  × 102 N/m 4. 3  × 102 N/m
Subtopic:  Energy of SHM |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A body performs S.H.M. . Its kinetic energy K varies with time t as indicated by graph

(a)    (b) 

(c)      (d) 

 

Subtopic:  Energy of SHM |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The amplitude of a damped oscillator decreases to 0.9 times its original magnitude in 5 s. In another 10 s, it will decrease to α times its original magnitude, where α equals

1. 0.7

2. 0.81

3. 0.729

4. 0.6

Subtopic:  Damped Oscillations (OLD NCERT) |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A particle performs SHM on x-axis with amplitude A and time period T. The time taken by the particle to travel a distance A5 starting from rest is

1. T20

2. T2πcos-145

3. T2πcos-115

4. T2πsin-115

Subtopic:  Simple Harmonic Motion |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch