The temperature at which the Celsius and Fahrenheit thermometers agree (to give the same numerical value) is:
1. | \(-40^\circ\) | 2. | \(40^\circ\) |
3. | \(0^\circ\) | 4. | \(50^\circ\) |
On a new scale of temperature, which is linear and called the \(\text{W}\) scale, the freezing and boiling points of water are \(39^\circ ~\text{W}\) and \(239^\circ ~\text{W}\) respectively. What will be the temperature on the new scale corresponding to a temperature of \(39^\circ ~\text{C}\) on the Celsius scale?
1. \(78^\circ ~\text{W}\)
2. \(117^\circ ~\text{W}\)
3. \(200^\circ ~\text{W}\)
4. \(139^\circ ~\text{W}\)
1. | \(-415.44^\circ ~\text{F} ,-69.88^\circ ~\text{F}\) |
2. | \(-248.58^\circ ~\text{F} ,-56.60^\circ~ \text{F}\) |
3. | \(315.44^\circ ~\text{F} ,-69.88^\circ ~\text{F}\) |
4. | \(415.44^\circ ~\text{F} ,-79.88^\circ~ \text{F}\) |
The ice-point reading on a thermometer scale is found to be \(20^\circ,\) while the steam point is found to be \(70^\circ.\) When this thermometer reads \(100^\circ ,\) the actual temperature is:
1. \(80^\circ\text{C}\)
2. \(130^\circ\text{C}\)
3. \(160^\circ\text{C}\)
4. \(200^\circ\text{C}\)