Which of the following figures represents the variation of the particle momentum and the associated de-Broglie wavelength?

1.   2.
3.
4.

Subtopic:  De-broglie Wavelength |
 85%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A photoelectric surface is illuminated successively by monochromatic light of wavelengths \(\lambda\) and \(\frac{\lambda}{2}\). If the maximum kinetic energy of the emitted photoelectrons in the second case is \(3\) times that in the first case, the work function of the surface of the material will be:
(\(h\) = Planck’s constant, \(c\) = speed of light)
1. \(\frac{hc}{2\lambda}\)
2. \(\frac{hc}{\lambda}\)
3. \(\frac{2hc}{\lambda}\)
4. \(\frac{hc}{3\lambda}\)
Subtopic:  Einstein's Photoelectric Equation |
 71%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Light with a wavelength of \(500\) nm is incident on a metal with a work function of \(2.28\) eV. The de Broglie wavelength of the emitted electron will be:
1. \( <2.8 \times 10^{-10}~\text{m} \)
2. \( <2.8 \times 10^{-9}~\text{m} \)
3. \( \geq 2.8 \times 10^{-9}~\text{m} \)
4. \( <2.8 \times 10^{-12}~\text{m} \)

Subtopic:  De-broglie Wavelength |
 60%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

When the energy of the incident radiation is increased by \(20\%\), the kinetic energy of the photoelectrons emitted from a metal surface increases from \(0.5\) eV to \(0.8\) eV. The work function of the metal will be:
1. \(0.65\) eV
2. \(1.0\) eV
3. \(1.3\) eV
4. \(1.5\) eV
Subtopic:  Einstein's Photoelectric Equation |
 67%
From NCERT
NEET - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What will be the percentage change in the de-Broglie wavelength of the particle if the kinetic energy of the particle is increased to \(16\) times its previous value?
1. \(25\)
2. \(75\)
3. \(60\)
4. \(50\)

Subtopic:  De-broglie Wavelength |
 69%
From NCERT
NEET - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The wavelength \(\lambda_{e}\) of an electron and \(\lambda_{p}\) of a photon of the same energy \(E\) are related as:
1. \(\lambda_p \propto \lambda^2_e\)
2. \(\lambda_p \propto \lambda_e\)
3. \(\lambda_p \propto \sqrt{\lambda_e}\)
4. \(\lambda_p \propto \frac{1}{\sqrt{\lambda_e}}\)

Subtopic:  De-broglie Wavelength |
 54%
From NCERT
NEET - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An \(\alpha\text-\)particle moves in a circular path of radius \(0.83\) cm in the presence of a magnetic field of \(0.25 ~\text{Wb/m}^2\). The de-Broglie wavelength associated with the particle will be:
1. \(1~\mathring{A}\) 2. \(0.1~\mathring{A}\)
3. \(10~\mathring{A}\) 4. \(0.01~\mathring{A}\)
Subtopic:  De-broglie Wavelength |
 57%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the momentum of an electron is changed by \(p\), then the de-Broglie wavelength associated with it changes by \(0.5\%\). What is the initial momentum of the electron?
1. \(200p\)
2. \(400p\)
3. \(\frac{p}{200}\)
4. \(100p\)

Subtopic:  De-broglie Wavelength |
 61%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface having a work function of \(5.01\) eV when ultraviolet light of \(200\) nm falls on it is:
1. \(2.4\) V 2. \(-1.2\) V
3. \(-2.4\) V 4. \(1.2\) V
Subtopic:  Einstein's Photoelectric Equation |
 57%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

When monochromatic radiation of intensity \(I\) falls on a metal surface, the number of photoelectrons and their maximum kinetic energy are \(N\) and \(T\) respectively. If the intensity of radiation is \(2I\) what is the number of emitted electrons and their maximum kinetic energy?
1. \(N\) and \(2T\) 2. \(2N\) and \(T\)
3. \(2N\) and \(2T\) 4. \(N\) and \(T\)
Subtopic:  Photoelectric Effect: Experiment |
 82%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch