premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Consider the situation shown in the figure. The wire AB is sliding on the fixed rails with a constant velocity. If the wire AB is replaced by a semicircular wire, the magnitude of the induced current will:

             

1. increase.
2. remain the same.
3. decrease.
4. increase or decrease depending on whether the semicircle bulges towards the resistance or away from it.

Subtopic:  Motional emf |
 71%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A wire cd of length \(l\) and mass \(m\) is sliding without friction on conducting rails \(ax\) and \(by\) as shown. The vertical rails are connected to each other with a resistance \(R\) between \(a\) and \(b\). A uniform magnetic field \(B\) is applied perpendicular to the plane \(abcd\) such that \(cd\) moves with a constant velocity of:

           

1. \({mgR \over Bl}\) 2. \({mgR \over B^2l^2}\)
3. \({mgR \over B^3l^3}\) 4. \({mgR \over B^2l}\)
Subtopic:  Motional emf |
 78%
Level 2: 60%+
Hints
Links

A coil having number of turns \(N\) and cross-sectional area \(A\) is rotated in a uniform magnetic field \(B\) with an angular velocity \(\omega\). The maximum value of the emf induced in it is:
1. \(\frac{NBA}{\omega}\)
2. \(NBAω\)
3. \(\frac{NBA}{\omega^{2}}\)
4. \(NBAω^{2}\)

Subtopic:  Faraday's Law & Lenz Law |
 90%
Level 1: 80%+
Hints
Links

advertisementadvertisement

A long solenoid has \(1000\) turns. When a current of \(4\) A flows through it, the magnetic flux linked with each turn of the solenoid is \(4\times 10^{-3}\) Wb. The self-inductance of the solenoid is:
1. \(3\) H
2. \(2\) H
3. \(1\) H
4. \(4\) H

Subtopic:  Self - Inductance |
 89%
Level 1: 80%+
NEET - 2016
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced e.m.f. is:

1. Twice per revolution 2. Four times per revolution
3. Six times per revolution 4. Once per revolution
Subtopic:  Faraday's Law & Lenz Law |
 72%
Level 2: 60%+
AIPMT - 2013
Hints
Links

The current \(i\) in an inductance coil varies with time \(t\) according to the graph shown in the figure. Which one of the following plots shows the variation of voltage in the coil with time?

      

1.  2.
3. 4.
Subtopic:  Self - Inductance |
 82%
Level 1: 80%+
Hints
Links

advertisementadvertisement

A bar magnet is released along the vertical axis of the conducting coil. The acceleration of the bar magnet is:

         

1. greater than \(g\). 2. less than \(g\).
3. equal to \(g\). 4. zero.
Subtopic:  Faraday's Law & Lenz Law |
 86%
Level 1: 80%+
Hints
Links

A rod having length \(l\) and resistance \(R_0\) is moving with a speed \(v\) as shown in the figure. The current through the rod is:
                            

1. \(\dfrac{B l v}{\frac{R_{1} R_{2}}{R_{1} + R_{2}} + R_{0}}\)

2. \(\dfrac{Blv}{\left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{o}}\right)^{2}}\)

3. \(\dfrac{B l v}{R_{1} + R_{2} + R_{0}}\)

4. \(\dfrac{B l v}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{0}}}\)

Subtopic:  Motional emf |
 67%
Level 2: 60%+
Hints
Links

A solenoid of inductance \(L\) and resistance \(R\) is connected to a battery of emf \(E.\) The maximum value of magnetic energy stored in the inductor is:
1. \(\dfrac{E^{2}}{2 R}\)
2. \(\dfrac{E^{2} L}{2 R^{2}}\)
3. \(\dfrac{E^{2} L}{R}\)
4. \(\dfrac{E^{2} L}{2 R}\)
Subtopic:  LR circuit |
 84%
Level 1: 80%+
Hints
Links

advertisementadvertisement

The coefficient of mutual inductance between two coils depends upon:

1. medium between coils
2. separation between coils
3. orientation of coils
4. All of these

Subtopic:  Mutual Inductance |
 88%
Level 1: 80%+
Hints
Links