A block \(P\) of mass \(m\) is placed on a frictionless horizontal surface. Another block \(Q\) of same mass is kept on \(P\) and connected to the wall with the help of a spring of spring constant \(k\) as shown in the figure. \(\mu_s\) is the coefficient of friction between \(P\) and \(Q\). The blocks move together performing SHM of amplitude \(A\). The maximum value of the friction force between \(P\) and \(Q\) will be:

         
1. \(kA\)
2. \(\frac{kA}{2}\)
3. zero
4. \(\mu_s mg\)

Subtopic:  Spring mass system |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A simple pendulum has a time period \(T_1\) when on the earth’s surface, and \(T_2\) when taken to a height \(R\) above the earth’s surface, where \(R\) is the radius of the earth. The value of \(\frac{T_2}{T_1}\) is:
1. \(1\)
2. \(\sqrt{2}\)
3. \(4\)
4. \(2\)
Subtopic:  Simple Harmonic Motion |
 51%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The displacement of a particle along the \(x\text-\)axis is given by \(x= a\sin^2\omega t\). The motion of the particle corresponds to:
1.  simple harmonic motion of frequency \(\frac{\omega}{\pi}\).
2.  simple harmonic motion of frequency \(\frac{3\omega}{2\pi}\).
3.  non-simple harmonic motion.
4.  simple harmonic motion of frequency \(\frac{\omega}{2\pi}\).
Subtopic:  Simple Harmonic Motion |
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A body performs simple harmonic motion about \(x=0\) with an amplitude a and a time period \(T\). The speed of the body at \(x= \frac{a}{2}\) will be:
1. \(\frac{\pi a\sqrt{3}}{2T}\)
2. \(\frac{\pi a}{T}\)
3. \(\frac{3\pi^2 a}{T}\)
4. \(\frac{\pi a\sqrt{3}}{T}\)
Subtopic:  Linear SHM |
 77%
From NCERT
NEET - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which one of the following equations of motion represents simple harmonic motion? (where \(k,k_0,k_1~\text{and}~a\) are all positive.)
1. Acceleration \(=-k_0x+k_1x^2\)
2. Acceleration \(=-k(x+a)\)
3. Acceleration \(=k(x+a)\)
4. Acceleration \(=kx\)
Subtopic:  Simple Harmonic Motion |
 73%
From NCERT
NEET - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two simple harmonic motions of angular frequency \(100~\text{rad s}^{-1}\) and \(1000~\text{rad s}^{-1}\) have the same displacement amplitude. The ratio of their maximum acceleration will be:
1. \(1:10\)
2. \(1:10^{2}\)
3. \(1:10^{3}\)
4. \(1:10^{4}\)

Subtopic:  Linear SHM |
 86%
From NCERT
NEET - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A simple pendulum is oscillating without damping. When the displacement of the bob is less than maximum, its acceleration vector \(\vec a\) is correctly shown in: 

1. 2.
3. 4.
Subtopic:  Angular SHM |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An SHM has an amplitude \(a\) and a time period \(T.\) The maximum velocity will be:
1. \({4a \over T}\)       
2. \({2a \over T}\)
3. \({2 \pi \over T}\)
4. \({2a \pi \over T}\)
Subtopic:  Simple Harmonic Motion |
 90%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle is executing simple harmonic motion with frequency \(f\). The frequency at which its kinetic energy changes into potential energy, will be:
1. \(\frac{f}{2}\)
2. \(f\)
3. \(2f\)
4. \(4f\)
Subtopic:  Energy of SHM |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

In a simple pendulum, the period of oscillation \(T\) is related to length of the pendulum \(L\) as:
1. \(\frac{L}{T}= \text{constant}\)
2. \(\frac{L^2}{T}= \text{constant}\)
3. \(\frac{L}{T^2}= \text{constant}\)
4. \(\frac{L^2}{T^2}= \text{constant}\)
Subtopic:  Angular SHM |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch