A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would Earth (mass \(= 5.98\times 10^{24}~\text{kg}\)) have to be compressed to be a black hole?
1. \(10^{-9}~\text{m}\)
2. \(10^{-6}~\text{m}\)
3. \(10^{-2}~\text{m}\)
4. \(100​~\text{m}\)

Subtopic:  Escape velocity |
 61%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The radius of a planet is twice the radius of the earth. Both have almost equal average mass densities. If \(V_P\) and \(V_E\) are escape velocities of the planet and the earth, respectively, then:
1. \(V_P = 1.5 V_E\)
2. \(V_P = 2V_E\)
3. \(V_E = 3 V_P\)
4. \(V_E = 1.5 V_P\)
Subtopic:  Escape velocity |
 80%
From NCERT
NEET - 2013
Please attempt this question first.
Hints
Please attempt this question first.

A particle of mass \(m\) is kept at rest at a height \(3R\) from the surface of the earth, where \(R\) is the radius of earth and \(M\) is the mass of the earth. The minimum speed with which it should be projected, so that it does not return, is:
(\(g\) is the acceleration due to gravity on the surface of the earth)
1. \(\left(\frac{{GM}}{2 {R}}\right)^{\frac{1}{2}} \) 2. \(\left(\frac{{g} R}{4}\right)^{\frac{1}{2}} \)
3. \( \left(\frac{2 g}{R}\right)^{\frac{1}{2}} \) 4. \(\left(\frac{G M}{R}\right)^{\frac{1}{2}}\)
Subtopic:  Escape velocity |
 71%
From NCERT
NEET - 2013
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

A particle of mass \(\mathrm{m}\) is thrown upwards from the surface of the earth, with a velocity \(\mathrm{u}\). The mass and the radius of the earth are, respectively, \(\mathrm{M}\) and \(\mathrm{R}\). \(\mathrm{G}\) is the gravitational constant and \(\mathrm{g}\) is the acceleration due to gravity on the surface of the earth. The minimum value of \(\mathrm{u}\) so that the particle does not return back to earth is:
1. \(\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}^2}} \)
2. \(\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}} \)
3.\(\sqrt{\frac{2 \mathrm{gM}}{\mathrm{R}^2}} \)
4. \(\sqrt{ \mathrm{2gR^2}}\)

Subtopic:  Escape velocity |
 89%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh

The earth is assumed to be a sphere of radius R. A platform is arranged at a height R from the surface of the earth. The escape velocity of a body from this platform is fve, where ve is its escape velocity from the surface of the earth. The value of f is:

1. 2

2. 12

3. 13

4. 12

Subtopic:  Escape velocity |
 68%
From NCERT
AIPMT - 2006
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh
Hints
Links
To view explanation, please take trial in the course.
NEET 2023 - Target Batch - Aryan Raj Singh