A solid sphere of mass \(M\) and radius \(R\) is in pure rolling with angular speed on a horizontal plane as shown.
The magnitude of the angular momentum of the sphere about the origin \(O\) is:
1.
2.
3.
4.
A thin circular ring of mass M and radius R is rotating about its axis with a constant angular velocity . Four objects of mass m are held gently at the opposite ends of the ring's two perpendicular diameters. The angular velocity of the ring will be:
1.
2.
3.
4.
A boy is standing on a disc rotating about the vertical axis passing through its centre. He pulls his arms towards himself, reducing his moment of inertia by a factor of m. The new angular speed of the disc becomes double its initial value. If the moment of inertia of the boy is I0 , then the moment of inertia of the disc will be:
1.
2.
3.
4.
A rod is falling down with constant velocity \(V_0\) as shown. It makes contact with hinge A and rotates around it. The angular velocity of the rod just after the moment when it comes in contact with hinge A is:
1. | \(2 \mathrm{V}_0 / 3 \mathrm{L} \) | 2. | \(3 \mathrm{V}_0 / 2 \mathrm{L} \) |
3. | \(\mathrm{V}_0 / \mathrm{L} \) | 4. | \(2 \mathrm{V}_0 / 5 \mathrm{L}\) |
The law of conservation of angular momentum is valid when:
1. | The net force is zero and the net torque is non-zero | 2. | The net force is non-zero and the net torque is non zero |
3. | Net force may or may not be zero and net torque is zero | 4. | Both force and torque must be zero |
The position of a particle is given by \(\vec r = \hat i+2\hat j-\hat k\) and momentum \(\vec P = (3 \hat i + 4\hat j - 2\hat k)\). The angular momentum is perpendicular to:
1. | X-axis |
2. | Y-axis |
3. | Z-axis |
4. | Line at equal angles to all the three axes |
A particle of mass \(m\) moves in the\(XY\) plane with a velocity of \(v\) along the straight line \(AB.\) If the angular momentum of the particle about the origin \(O\) is \(L_A\) when it is at \(A\) and \(L_B\) when it is at \(B,\) then:
1. | \(L_A>L_B\) |
2. | \(L_A=L_B\) |
3. | The relationship between \(L_A\) and \(L_B\) depends upon the slope of the line \(AB.\) |
4. | \(L_A<L_B\) |