Assertion (A): | A standing bus suddenly accelerates. If there was no friction between the feet of a passenger and the floor of the bus, the passenger would move back. |
Reason (R): | In the absence of friction, the floor of the bus would slip forward under the feet of the passenger. |
1. | (A) is True but (R) is False. |
2. | (A) is False but (R) is True. |
3. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
4. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
Assertion (A): | Newton's law of action and reaction is a consequence of Newton's law of inertia. |
Reason (R): | Newton's law of inertia implies that any body that is not acted upon by external forces cannot change its state of rest or uniform motion. |
1. | (A) is True but (R) is False. |
2. | (A) is False but (R) is True. |
3. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
4. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
(P) | \(f\) increases if \(m\) is increased. |
(Q) | \(f\) increases if \(F_A\) is increased. |
(R) | \(f\) increases if \(F_R\) is increased. |
Assertion (A): | (Newton's 1st Law of Motion) Everybody continues in its state of rest or of uniform motion in a straight line except in so far as it be compelled by an externally impressed force to act otherwise. |
Reason (R): | It is observed that when a car brakes suddenly, the passengers are thrown forward. |
1. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
3. | (A) is True but (R) is False. |
4. | (A) is False but (R) is True. |
A block of mass \(M\) lies at rest on a horizontal table.
Statement I: | (Newton's 3rd Law) To every action, there is an equal and opposite reaction. Action and reaction forces act on different bodies and in opposite directions. |
Statement II: | The normal reaction is the reaction force, while the weight is the action. |
1. | Statement I is True, Statement II is True and Statement I is the correct reason for Statement II. |
2. | Statement I is True, Statement II is True and Statement I is not the correct reason for Statement II. |
3. | Statement I is True, Statement II is False. |
4. | Statement I is False, Statement II is True. |
Consider the following two statements
A: | The linear momentum of a particle is independent of the frame of reference. |
B: | The kinetic energy of a particle is independent of the frame of reference. |
1. | Both A and B are true |
2. | A is true but B is false |
3. | A is false but B is true |
4. | Both A and B are false |
Mark the correct statements about the friction between two bodies.
(a) | static friction is always greater than kinetic friction. |
(b) | coefficient of static friction is always greater than the coefficient of kinetic friction. |
(c) | limiting friction is always greater than kinetic friction. |
(d) | limiting friction is never less than static friction. |
Choose the correct option:
1. | (a), (b) and (c) |
2. | (b), (c) and (d) |
3. | (a) and (d) |
4. | (c) and (d) |
In the figure, the coefficient of friction between the floor and body \(B\) is \(0.1.\) The coefficient of friction between bodies \(B\) and \(A\) is \(0.2.\) A force \(F\) is applied as shown on \(B.\) The mass of \(A\) is \(m/2\) and of \(B\) is \(m.\)
(a) | The bodies will move together if \(F = 0.25\text{mg}\) |
(b) | The \(A\) will slip with \(B\) if \(F = 0.5\text{mg}\) |
(c) | The bodies will move together if \(F = 0.5\text{mg}\) |
(d) | The bodies will be at rest if \(F = 0.1\text{mg}\) |
(e) | The maximum value of \(F\) for which the two bodies will move together is \(0.45\text{mg}\) |
Which of the following statement(s) is/are true?
1. (a), (b), (d), (e)
2. (a), (c), (d), (e)
3. (b), (c), (d)
4. (a), (b), (c)
A particle is on a smooth horizontal plane. A force \(F\) is applied, whose \((F\text-t)\) graph is given.
Consider the following statements.
(a) | At time \(t_1\), acceleration is constant. |
(b) | Initially the particle must be at rest. |
(c) | At time \(t_2\), acceleration is constant. |
(d) | The initial acceleration is zero. |
Select the correct statement(s):
1. | (a), (c) | 2. | (a), (b), (d) |
3. | (c), (d) | 4. | (b), (c) |
The figure shows the position-time graph of a particle of mass \(4~\text{kg}\). What is the force on the particle for \(t>4~\text{s}\)?
(Consider one-dimensional motion only).
1. | \(0\) | 2. | \(40~\text{N}\) |
3. | \(20~\text{N}\) | 4. | \(10~\text{N}\) |