If \(y = t^3+1\) and \(x = t^2+3,\) what is the value of \(\dfrac{dy}{dx}?\)
1. \(\dfrac{t^2}{3}\)
2. \(\dfrac{t}{2}\)
3. \(\dfrac{3t}{2}\)
4. \(t^2\)

Subtopic:  Differentiation |
 85%
Level 1: 80%+
Hints
Links

The velocity of a body moving along the \(x\)-axis varies with \(x\) as \(v   =   \left(x^{3} -x^{2}\right)\) m/s. Find the acceleration of the body at \(x= 2~\text{m}\), if the acceleration is defined as \(a = v\frac{dv}{dx}\).
1. \(132~\text{m/s}^2\)
2. \(32~\text{m/s}^2\)
3. \(8~\text{m/s}^2\)
4. \(4~\text{m/s}^2\)

Subtopic:  Differentiation |
 73%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The volume flow rate of water flowing out of a tubewell is given by \(Q = \left( 3 t^{2}- 4 t +1\right)~\text{m}^3/\text{sec}  \). What volume of water will flow out of the tubewell in the third second if the volume flow rate is defined as \(Q=\frac{dV}{dt}\)?
1. \(10\) m3
2. \(17\) m3
3. \(36\) m3
4. \(34\) m3

Subtopic:  Integration |
 64%
Level 2: 60%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The unit vector perpendicular to vectors \(\overrightarrow a= \left(3 \hat{i}+\hat{j}\right)  \) and \(\overrightarrow B = \left(2\hat i - \hat j -5\hat k\right)\) is:
1. \(\pm \frac{\left(\right. \hat{i} - 3 \hat{j} + \hat{k} \left.\right)}{\sqrt{11}}\)
2. \(\pm \frac{\left(3 \hat{i} + \hat{j}\right)}{\sqrt{11}}\)
3. \(\pm \frac{\left(\right. 2 \hat{i} - \hat{j} - 5 \hat{k} \left.\right)}{\sqrt{30}}\)
4. None of these

Subtopic:  Scalar Product |
 55%
Level 3: 35%-60%
Hints
Links

The maximum or the minimum value of the function \(y= 25x^{2}-10x +5\) is:
1. \(y_{\text{min}}= 4\)
2. \(y_{\text{max}}= 8\)
3. \(y_{\text{min}}= 8\)
4. \(y_{\text{max}}= 4\)

Subtopic:  Differentiation |
 68%
Level 2: 60%+
Hints
Links

If \(\overrightarrow {A} = 2\hat{i} + \hat{j} - \hat{k},\) \(\overrightarrow {B} = \hat{i} + 2\hat{j} + 3\hat{k},\) and \(\overrightarrow {C} = 6 \hat{i} - 2\hat{j} - 6\hat{k},\) then the angle between \(\left(\overrightarrow {A} + \overrightarrow{B}\right)\) and \(\overrightarrow{C}\) will be:
1. \(30^{\circ}\)
2. \(45^{\circ}\)
3. \(60^{\circ}\)
4. \(90^{\circ}\)

Subtopic:  Scalar Product |
 77%
Level 2: 60%+
Hints
Links

advertisementadvertisement

The value of 1x+1dx is:

1. ln (\(x\) + 1) + C

2. x+1-2+C

3. 1x-12+C

4. ln (\(x\) – 1) + C

Subtopic:  Integration |
 78%
Level 2: 60%+
Hints
Links

The magnitude of the resultant of two vectors of magnitude \(3\) units and \(4\) units is \(1\) unit. What is the value of their dot product?

1. \(-12\) units

2. \(-7\) units

3. \(-1\) unit

4. \(0\)

Subtopic:  Scalar Product |
 74%
Level 2: 60%+
Hints
Links

Identify the unit vector in the following:
1. \(\hat i + \hat j\)
2. \(\frac{\hat i}{\sqrt{2}}\)
3. \(\hat k - \frac{\hat i}{\sqrt{2}}\)
4. \(\frac{\hat i +\hat j}{\sqrt{2}}\)

Subtopic:  Resultant of Vectors |
 69%
Level 2: 60%+
Hints
Links

advertisementadvertisement

If \(\overrightarrow A= 3\hat i + 4\hat j\) and \(\overrightarrow B = 7\hat i + 24\hat k\), then the vector having the same magnitude as that of \(\overrightarrow {B}\) and parallel to \(\overrightarrow {A}\) is:

1. \(15\hat i + 20\hat j\) 2. \(\dfrac{7}{5}\hat i + \dfrac{24}{5}\hat j\)
3. \(20\hat i + 15\hat j\) 4. \(15\hat i + 20\hat k\)
Subtopic:  Resolution of Vectors |
 60%
Level 2: 60%+
Hints
Links