A particle starting from the origin \((0,0)\) moves in a straight line in the \((x,y)\) plane. Its coordinates at a later time are (, \(3).\) The path of the particle makes an angle of __________ with the \(x\)-axis:
1. \(30^\circ\)
2. \(45^\circ\)
3. \(60^\circ\)
4. \(0\)
The position of a moving particle at time \(t\) is \(\overrightarrow{r}=3\hat{i}+4t^{2}\hat{j}-t^{3}\hat{k}.\) Its displacement during the time interval \(t=1\) s to \(t=3\) s will be:
1. | \(\hat{j}-\hat{k}\) | 2. | \(3\hat{i}-4\hat{j}-\hat{k}\) |
3. | \(9\hat{i}+36\hat{j}-27\hat{k}\) | 4. | \(32\hat{j}-26\hat{k}\) |
Three girls skating on a circular ice ground of radius \(200\) m start from a point \(P\) on the edge of the ground and reach a point \(Q\) diametrically opposite to \(P\) following different paths as shown in the figure. The correct relationship among the magnitude of the displacement vector for three girls will be:
1. \(A > B > C\)
2. \(C > A > B\)
3. \(B > A > C\)
4. \(A = B = C\)
A cat is situated at point \(A\) (\(0,3,4\)) and a rat is situated at point \(B\) (\(5,3,-8\)). The cat is free to move but the rat is always at rest. The minimum distance travelled by the cat to catch the rat is:
1. \(5\) unit
2. \(12\) unit
3. \(13\) unit
4. \(17\) unit
A particle is moving on a circular path of radius \(R.\) When the particle moves from point \(A\) to \(B\) (angle \( \theta\)), the ratio of the distance to that of the magnitude of the displacement will be:
1. \(\dfrac{\theta}{\sin\frac{\theta}{2}}\)
2. \(\dfrac{\theta}{2\sin\frac{\theta}{2}}\)
3. \(\dfrac{\theta}{2\cos\frac{\theta}{2}}\)
4. \(\dfrac{\theta}{\cos\frac{\theta}{2}}\)
A particle is moving such that its position coordinates \((x,y)\) are \( (2~\text m, 3~\text m)\) at time \(t=0,\) \( (6~\text m, 7~\text m)\) at time \(t=2~\text s\) and \( (13~\text m, 14~\text m)\) at time \(t=5~\text s.\) The average velocity vector \((v_{avg})\) from \(t=0\) to \(t=5~\text s\) is:
1. | \(\frac{1}{5}\left ( 13\hat{i}+14\hat{j} \right )\) | 2. | \(\frac{7}{3}\left ( \hat{i}+\hat{j} \right )\) |
3. | \(2\left ( \hat{i}+\hat{j} \right )\) | 4. | \(\frac{11}{5}\left ( \hat{i}+\hat{j} \right )\) |
In a two-dimensional motion, instantaneous speed \(v_0\) is a positive constant. Then which of the following is necessarily true?
1. | the average velocity is not zero at any time. |
2. | average acceleration must always vanish. |
3. | displacements in equal time intervals are equal. |
4. | equal path lengths are traversed in equal intervals. |
A car turns at a constant speed on a circular track of radius \(100~\text m,\) taking \(62.8~\text s\) for every circular lap. The average velocity and average speed for each circular lap, respectively, is:
1. | \(0,~0\) | 2. | \(0,\) \(10~\text{m/s},\) |
3. | \(10~\text{m/s},\) \(10~\text{m/s},\) | 4. | \(10~\text{m/s},\) \(0\) |
If three coordinates of a particle change according to the equations \(x = 3 t^{2}, y = 2 t , z= 4\), then the magnitude of the velocity of the particle at time \(t=1\) second will be:
1. \(2\sqrt{11}~\text{unit}\)
2. \(\sqrt{34}~\text{unit}\)
3. \(40~\text{unit}\)
4. \(2\sqrt{10}~\text{unit}\)