For the nuclear reaction:
\({}_{92}^{235}\mathrm{U}+ {}_{0}^{1}\mathrm{n}\rightarrow {}_{56}^{144}\mathrm{Ba}+...+3{}_{0}^{1}\mathrm{n}\)
The blank space can be filled by:
1. \({}_{26}^{89}\mathrm{Kr}\) 2. \({}_{36}^{89}\mathrm{Kr}\)
3. \({}_{26}^{90}\mathrm{Sr}\) 4. \({}_{38}^{89}\mathrm{Sr}\)
Subtopic:  Nuclear Energy |
 89%
Level 1: 80%+
AIPMT - 1998

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Fusion reaction takes place at a higher temperature because:

1. atoms get ionized at high temperatures.
2. kinetic energy is high enough to overcome the Coulomb repulsion between nuclei.
3. molecules break up at a high temperature.
4. nuclei break up at a high temperature.
Subtopic:  Nuclear Energy |
 82%
Level 1: 80%+
NEET - 2011

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Which of the following is used as a moderator in nuclear reactors? 

1. Plutonium 

2. Cadmium 

3. Heavy water

4. Uranium 

Subtopic:  Nuclear Energy |
 80%
Level 1: 80%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

If in nuclear reactor using \(\mathrm{U}^{235}\) as fuel, the power output is \(4.8\) MW, the number of fissions per second is:
(Energy released per fission of \(\mathrm{U}^{235}=200\) MeV watts, \(1~\text{eV}= 1.6\times 10^{-19}~\text{J})\)
 
1. \(1.5\times 10^{17}\) 2. \(3\times 10^{19}\)
3. \(1.5\times 10^{25}\) 4. \(3\times 10^{25}\)
Subtopic:  Nuclear Energy |
 73%
Level 2: 60%+

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.