For the reaction, \(2 A+B \rightarrow 3 C+D\)
Which of the following is an incorrect expression for the rate of reaction?
1. | \(-\frac{d[C]}{{3} d t }\) | 2. | \(-\frac{d[B]}{d t} \) |
3. | \(\frac{d[D]}{d t} \) | 4. | \(-\frac{d[A]}{2 d t}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
For a general reaction A B, the plot of the concentration of A vs. time is given in the figure.
The slope of the curve will be:
1. | -k | 2. | -k/2 |
3. | -k2 | 4. | -k/3 |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The correct expression for the rate of reaction given below is:
\(5 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_3^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_2(\mathrm{aq})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{l})\)
1. | \(\frac{\Delta\left[B r^{-}\right]}{\Delta t}=5 \frac{\Delta\left[H^{+}\right]}{\Delta t} \) | 2. | \(\frac{\Delta\left[\mathrm{Br}^{-}\right]}{\Delta t}=\frac{6}{5} \frac{\Delta\left[\mathrm{H}^{+}\right]}{\Delta t} \) |
3. | \(\frac{\Delta[\mathrm{Br^-}]}{\Delta t}=\frac{5}{6} \frac{\Delta\left[\mathrm{H}^{+}\right]}{\Delta t} \) | 4. | \(\frac{\Delta\left[\mathrm{Br}^{-}\right]}{\Delta t}=6 \frac{\Delta\left[\mathrm{H}^{+}\right]}{\Delta t}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
For the reaction,
N2O5(g) → 2NO2(g) + \(\frac{1}{2}\)O2(g)
the value of the rate of disappearance of is given as . The rate of formation of is given respectively as:
1. 6.25 x 10-3 mol L-1s-1 and 6.25 x 10-3 mol L-1s-1
2. 1.25 x 10-2 mol L-1s-1 and 3.125 x 10-3 mol L-1s-1
3. 6.25 x 10-3 mol L-1s-1 and 3.125 x 10-3 mol L-1s-1
4. 1.25 x 10-2 mol L-1s-1 and 6.25 x 10-3 mol L-1s-1
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The decomposition of NH3 on a platinum surface is a zero-order reaction. The rates of production of N2 and H2 will be respectively:
(given ; k = 2.5 × 10–4 mol–1 L s–1 )
1. | 2.5 × 10−4 mol L−1 s−1 and 5.5 × 10−4 mol L−1 s−1
|
2. | 2.5 × 10−4 mol L−1 s−1 and 7.5 × 10−4 mol L−1 s−1
|
3. | 1.5 × 10−4 mol L−1 s−1 and 4.5 × 10−4 mol L−1 s−1
|
4. | 0.5 × 10−4 mol L−1 s−1 and 3.5 × 10−4 mol L−1 s−1 |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
For a reaction, 2A + B → C + D, the following observations were recorded:
Experiment | [A]/mol L–1 | [B]/mol L–1 | Initial rate of formation of D/mol L–1 min–1 |
I | 0.1 | 0.1 | 6.0 × 10–3 |
II | 0.3 | 0.2 | 7.2 × 10–2 |
III | 0.3 | 0.4 | 2.88 × 10–1 |
IV | 0.4 | 0.1 | 2.40 × 10–2 |
The rate law applicable to the above mentioned reaction would be:
1. Rate = k[A]2[B]3
2. Rate = k[A][B]2
3. Rate = k[A]2[B]
4. Rate = k[A][B]
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The rate equation of a reaction is expressed as, Rate = \(k(P_{CH_{3}OCH_{3}})^{\frac{3}{2}}\)
(Unit of rate = bar min–1)
The units of the rate constant will be:
1. bar1/2 min
2. bar2 min–1
3. bar–1 min–2
4. bar–1/2 min–1
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
True statement among the following is:
1. | The rate of a reaction decreases with the passage of time as the concentration of reactants decreases. |
2. | The rate of a reaction is the same at any time during the reaction. |
3. | The rate of a reaction is independent of temperature change. |
4. | The rate of a reaction decreases with an increase in the concentration of the reactants. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
t/s | 0 | 30 | 60 | 90 |
[Ester]/mol L–1 | 0.55 | 0.31 | 0.17 | 0.085 |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
If at a given instant, for the reaction 2N2O5 → 4NO2 + O2 rate and rate constant are 1.02 × 10-4 and 3.4 × 10-5 sec -1 respectively, then the concentration of at that time will be:
1. 1.732
2. 3.0
3.
4.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.