The relation between λ and T1/2 is:
(T1/2 = half-life, λ → decay constant)

1. T1/2=ln2λ

2. T1/2 ln2=λ

3. T1/2=1λ

4. (λ+T1/2)=ln2

Subtopic:  Radioactivity (OLD NCERT) |
 86%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For the nuclear reaction:
\({}_{92}^{235}\mathrm{U}+ {}_{0}^{1}\mathrm{n}\rightarrow {}_{56}^{144}\mathrm{Ba}+...+3{}_{0}^{1}\mathrm{n}\)
The blank space can be filled by:
1. \({}_{26}^{89}\mathrm{Kr}\) 2. \({}_{36}^{89}\mathrm{Kr}\)
3. \({}_{26}^{90}\mathrm{Sr}\) 4. \({}_{38}^{89}\mathrm{Sr}\)
Subtopic:  Nuclear Energy |
 87%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If in a nuclear fusion process. the masses of the fusing nuclei be \(m_1\) and \(m_2\) and the mass of the resultant nucleus be \(m_3,\) then:
1. \( m_3=\left|m_1-m_2 \right|\) 2. \( m_3<\left ( m_1+m_2 \right ) \)
3. \( m_3>\left ( m_1+m_2 \right ) \) 4. \( m_3=\left ( m_1+m_2 \right ) \)
Subtopic:  Nuclear Binding Energy |
 78%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A nucleus represented by the symbol \({}_{Z}^{A}\mathrm{X}\) has:
1. \(Z\) protons and \(A-Z\) neutrons
2. \(Z\) protons and \(A\) neutrons
3. \(A\) protons and \(Z-A\) neutrons
4. \(Z\) neutrons and \(A-Z\) protons
Subtopic:  Nuclear Binding Energy |
 90%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the half-life of a radionuclide is 77 days, then its decay constant is:
1.  0.003/day
2.  0.006/day
3.  0.009/day
4.  0.012/day

Subtopic:  Radioactivity (OLD NCERT) |
 76%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which of the following are suitable for the fusion process?

1. light nuclei
2. heavy nuclei
3. the element must be lying in the middle of the periodic table
4. middle elements which are lying on the binding energy curve
Subtopic:  Nuclear Energy |
 79%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The half-life of a sample of a radioactive element containing 4 × 1016 active nuclei, is 10 days. The number of decayed nuclei after 30 days will be: 

1. 0.5×1016

2. 2×1016

3. 3.5×1016

4. 1×1016

Subtopic:  Radioactivity (OLD NCERT) |
 54%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A sample of a radioactive element has a mass of 10 gm at an instant t = 0. The approximate mass of this element in the sample after two mean lives is:

1. 1.35 gm

2. 2.50 gm

3. 3.70 gm

4. 6.30 gm

Subtopic:  Radioactivity (OLD NCERT) |
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which of the following rays are not electromagnetic waves?
1. \({X}\text-\)rays
2. \(\gamma\text-\)rays
3. \(\beta\text-\)rays
4. Heat rays
Subtopic:  Types of Decay |
 57%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The mass of a proton is \(1.0073\) u and that of a neutron is \(1.0087\) u (u = atomic mass unit). The binding energy of \({}_{2}^{4}\mathrm{He}\) is: (Given: helium nucleus mass ≈ \(4.0015\) u)
1. \(0.0305\) J 2. \(0.0305\) erg
3. \(28.4\) MeV 4. \(0.061\) u
Subtopic:  Nuclear Binding Energy |
 75%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch