A hydrogen atom is in an excited state of principal quantum number \((n)\). It emits a photon of wavelength \((\lambda)\) when it returns to the ground state. The value of \(n\) is:
1. \(\sqrt{\frac{\lambda R}{\lambda R-1}}\)
2. \(\sqrt{\frac{(\lambda R-1)}{\lambda R}}\)
3. \(\sqrt{\lambda(R-1)}\)
4. None of these

Subtopic:  Bohr's Model of Atom |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The given diagram indicates the energy levels of a certain atom. When the system moves from the \(2E\) level to \(E\), a photon of wavelength \(\lambda\) is emitted. What is the wavelength of the photon produced during its transition from the \(\frac{4E}{3}\) level to \(E\)?

          
1. \(\frac{\lambda}{3}\)
2. \(\frac{3\lambda}{4}\)
3. \(\frac{4\lambda}{3}\)
4. \(3\lambda\)

Subtopic:  Spectral Series |
 60%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The wavenumber of a photon in the Brackett series of a hydrogen atom is \(\frac{9}{400}R.\) What is the quantum number of the electron that has transited from the orbit?
1. \(5\)
2. \(6\)
3. \(4\)
4. \(7\)

Subtopic:  Spectral Series |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Hydrogen \({}_{1}\mathrm{H}^{1}\), Deuterium \({}_{1}\mathrm{H}^{2}\), singly ionised helium \(\left({}_{2}\mathrm{He}^{4}\right)^+\), and doubly ionised lithium\(\left({}_{3}\mathrm{Li}^{6}\right)^{+++}\) all have one electron around the nucleus. Consider an electron transition from \(n=2\) to \(n=1\). If the wavelengths of emitted radiations are \(\lambda_1, \lambda_2, \lambda_3~\text{and}~\lambda_4\) respectively, then approximately which one of the following is correct?
1. \(4 \lambda_1=2 \lambda_2=2 \lambda_3=\lambda_4\)
2. \( \lambda_1=2 \lambda_2=2 \lambda_3=\lambda_4\)
3. \( \lambda_1=\lambda_2=4 \lambda_3=9\lambda_4\)
4. \( \lambda_1=2\lambda_2=3 \lambda_3=\lambda_4\)

Subtopic:  Bohr's Model of Atom |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The radius of a hydrogen atom in its ground state is \(5.3\times 10^{-11}\) m. After collision with an electron, it is found to have a radius of \(21.2\times 10^{-11}\) m. What is the principal quantum number n of the final state of the atom?
1. \(n=4\)
2. \(n=2\)
3. \(n=16\)
4. \(n=3\)

Subtopic:  Bohr's Model of Atom |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The energy of \(24.6\) eV is required to remove one of the electrons from a neutral helium atom. What is the energy (in eV) required to remove both the electrons from a neutral helium atom?
1. \(38.2\)
2. \(49.2\)
3. \(51.8\)
4. \(79.0\)

Subtopic:  Bohr's Model of Atom |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The ionisation energy of a hydrogen atom is \(13.6~\text{eV}\). Following Bohr's theory, what is the energy corresponding to a transition between the \(3^{th}\) and \(4^{th}\) orbit?
1. \(3.40~\text{eV}\)
2. \(1.51~\text{eV}\)
3. \(0.85~\text{eV}\)
4. \(0.66~\text{eV}\)

Subtopic:  Bohr's Model of Atom |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

As per the Bohr model, the minimum energy (in eV) required to remove the electron from the ground state of a double ionised lithium ion (\(Z=3\)) is:
1. \(1.51\)
2. \(13.6\)
3. \(40.8\)
4. \(122.4\)

Subtopic:  Bohr's Model of Atom |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The energy of an electron in an excited hydrogen atom is \(-3.4~\text{eV}\).  Its angular momentum will be:
(\(h = 6.626\times 10^{-34}\) J-s)
1. \(1.11\times 10^{34}~\text{J-s}\)
2. \(1.51\times 10^{-31}~\text{J-s}\)
3. \(2.11\times 10^{-34}~\text{J-s}\)
4. \(3.72\times 10^{-34}~\text{J-s}\)

Subtopic:  Bohr's Model of Atom |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The frequency of the series limit of the Balmer series of hydrogen atoms in terms of Rydberg constant \(R\) and velocity of light \(C\) is:
1. \(\frac{RC}{4}\)
2. \(RC\)
3. \(\frac{4}{RC}\)
4. \(4RC\)

Subtopic:  Spectral Series |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch