| 1. | \(L(1+\gamma\theta)\) | 2. | \(L\left(1+\dfrac\gamma2\theta\right)\) |
| 3. | \(L\left(1+\dfrac\gamma3\theta\right)\) | 4. | \(L\left(1+\dfrac{2\gamma}3\theta\right)\) |
| 1. | \(\alpha_1L_2^2=\alpha_2L_1^2\) | 2. | \(\alpha_1^2L_2=\alpha_2^2L_1\) |
| 3. | \(\alpha_1L_1=\alpha_2L_2\) | 4. | \(\alpha_1L_2=\alpha_2L_1\) |
The coefficient of area expansion \(\beta\) of a rectangular sheet of a solid in terms of the coefficient of linear expansion \(\alpha\) is:
1. \(2\alpha\)
2. \(\alpha\)
3. \(3\alpha\)
4. \(\alpha^2\)
| 1. | \(3 \times 10^{-4} / ^\circ\text C\) | 2. | \(2 \times 10^{-4} / ^\circ\text C\) |
| 3. | \(6 \times 10^{-4} / ^\circ\text C\) | 4. | \(10^{-4} / ^\circ\text C\) |
A rod \(\mathrm{A}\) has a coefficient of thermal expansion \((\alpha_A)\) which is twice of that of rod \(\mathrm{B}\) \((\alpha_B)\). The two rods have length \(l_A,~l_B\) where \(l_A=2l_B\). If the two rods were joined end-to-end, the average coefficient of thermal expansion is:
| 1. | \(\alpha_A\) | 2. | \(\dfrac{2\alpha_A}{6}\) |
| 3. | \(\dfrac{4\alpha_A}{6}\) | 4. | \(\dfrac{5\alpha_A}{6}\) |
The temperature of water at the surface of a deep lake is \(2^{\circ} ~\text{C}.\) The temperature expected at the bottom is:
1. \(0^{\circ} \mathrm{C}\)
2. \(2^{\circ} \mathrm{C}\)
3. \(4^{\circ} \mathrm{C}\)
4. \(6^{\circ} \mathrm{C}\)