Two spheres of masses \(m\) and \(M\) are situated in air and the gravitational force between them is \(F.\) If the space around the masses is filled with a liquid of specific density \(3,\) the gravitational force will become:
1. \(3F\)
2. \(F\)
3. \(F/3\)
4. \(F/9\)

Subtopic:  Newton's Law of Gravitation |
 84%
Level 1: 80%+
AIPMT - 2003
Hints
Links

Mass \(M\) is divided into two parts \(xM\) and \((1-x)M.\) For a given separation, the value of \(x\) for which the gravitational attraction between the two pieces becomes maximum is:

1. \(\frac{1}{2}\) 2. \(\frac{3}{5}\)
3. \(1\) 4. \(2\)
Subtopic:  Newton's Law of Gravitation |
 78%
Level 2: 60%+
Hints
Links

Two particles of mass \(m\) and \(4m\) are separated by a distance \(r.\) Their neutral point is at:
1. \(\frac{r}{2}~\text{from}~m\)
2. \(\frac{r}{3}~\text{from}~4m\)
3. \(\frac{r}{3}~\text{from}~m\)
4. \(\frac{r}{4}~\text{from}~4m\)

Subtopic:  Newton's Law of Gravitation |
 79%
Level 2: 60%+
Hints
Links

advertisementadvertisement

Three identical point masses, each of mass \(1~\text{kg}\) lie at three points \((0,0),\)  \((0,0.2~\text{m}),\)  \((0.2~\text{m}, 0).\) The net gravitational force on the mass at the origin is:
1. \(6.67\times 10^{-9}(\hat i +\hat j)~\text{N}\)
2. \(1.67\times 10^{-9}(\hat i +\hat j) ~\text{N}\)
3. \(1.67\times 10^{-9}(\hat i -\hat j) ~\text{N}\)
4. \(1.67\times 10^{-9}(-\hat i -\hat j) ~\text{N}\)

Subtopic:  Newton's Law of Gravitation |
 68%
Level 2: 60%+
Hints

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Suppose the gravitational force varies inversely as the \(n^{th}\) power of distance then the time period of a planet in circular orbit of radius \(R\) around the sun will be proportional to:
1. \(R^{\left(\frac{n+1}{2}\right)}\)
2. \(R^{\left(\frac{n-1}{2}\right)}\)
3. \(R^n\)
4. \(R^{\left(\frac{n-2}{2}\right)}\)

Subtopic:  Newton's Law of Gravitation |
 67%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Two spherical bodies of masses \(M\) and \(5M\) and radii \(R\) and \(2R\) are released in free space with initial separation between their centres equal to \(12R.\) If they attract each other due to gravitational force only, then the distance covered by the smaller body before the collision is:

1. \(2.5R\) 2. \(4.5R\)
3. \(7.5R\) 4. \(1.5R\)

Subtopic:  Newton's Law of Gravitation |
 62%
Level 2: 60%+
NEET - 2015
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Two identical hollow spheres of negligible thickness are placed in contact with each other. The force of gravitation between the spheres will be proportional to (\(R\) = radius of each sphere):
1. \(R\)
2. \(R^2\)
3. \(R^4\)
4. \(R^3\)

Subtopic:  Newton's Law of Gravitation |
 51%
Level 3: 35%-60%
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

Two identical solid copper spheres of radius \(R\) are placed in contact with each other. The gravitational attraction between them is proportional to:
1. \(R^2\)
2. \(R^{-2}\)
3. \(R^4\)
4. \(R^{-4}\)

Subtopic:  Newton's Law of Gravitation |
 56%
Level 3: 35%-60%
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
The gravitational force between two point masses \(m_1\) and \(m_2\) at separation \(r\) is given by \(F = k \frac{m_1m_2}{r^2}\). The constant \(k\):
1. depends on the system of units only.
2. depends on the medium between masses only.
3. depends on both (a) and (b).
4. is independent of both (a) and (b).

Subtopic:  Newton's Law of Gravitation |
Level 3: 35%-60%
Hints
Links

advertisementadvertisement