The displacement \(x\) of a particle moving in one dimension under the action of a constant force is related to time t by the equation t = x + 3, where \(x\) is in metres and \(t\) is in seconds. What is the displacement of the particle from t = 0 s to t = 6 s?

1. \(0\)

2. \(12\) m

3. \(6\) m

4. \(18\) m

Subtopic:  Distance & Displacement |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The acceleration \(a\) (in ms-2) of a body, starting from rest varies with time \(t\) (in \(\mathrm{s}\)) as per the equation \(a=3t+4.\) The velocity of the body at time \(t=2\) \(\mathrm{s}\) will be:
1. \(10~\text{ms}^{-1}\)
2. \(18~\text{ms}^{-1}\)
3. \(14~\text{ms}^{-1}\)
4. \(26~\text{ms}^{-1}\)

Subtopic:  Non Uniform Acceleration |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A point moves in a straight line under the retardation \(av^2\). If the initial velocity is \(u,\) the distance covered in \(t\) seconds is:
1. \((aut)\)
2. \(\frac{1}{a}\mathrm{ln}(aut)\)
3. \(\frac{1}{a}\mathrm{ln}(1+aut)\)
4. \(a~\mathrm{ln}(aut)\)

Subtopic:  Non Uniform Acceleration |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The relation between time and distance is given by t=αx2+βx, where α and β are constants. The retardation, as calculated based on this equation, will be (assume v to be velocity):
1. 2αv3
2. 2βv3
3. 2αβv3
4. 2β2v3

Subtopic:  Instantaneous Speed & Instantaneous Velocity |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The displacement of a particle is given by \(y = a + bt + ct^{2} - dt^{4}\). The initial velocity and acceleration are, respectively:

1. \(b, -4d\) 2. \(-b,2c\)
3. \(b, ~2c\) 4. \(2c, -2d\)
Subtopic:  Non Uniform Acceleration |
 81%
From NCERT
PMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An elevator car, whose floor to ceiling distance is equal to \(2.7~\text{m}\), starts ascending with constant acceleration of \(1.2~\text{ms}^{-2}\). \(2\) sec after the start, a bolt begins falling from the ceiling of the car. The free fall time of the bolt is: 
1. \(\sqrt{0.54}~\text{s}\)
2. \(\sqrt{6}~\text{s}\)
3. \(0.7~\text{s}\)
4. \(1~\text{s}\)

Subtopic:  Relative Motion in One Dimension |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The acceleration \(a\) in m/s2 of a particle is given by a=3t2+2t+2 where t is the time. If the particle starts out with a velocity, \(u=2\) m/s at t = 0, then the velocity at the end of \(2\) seconds will be:
1. \(12\) m/s
2. \(18\) m/s
3. \(27\) m/s
4. \(36\) m/s

Subtopic:  Acceleration |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle moves along a straight line such that its displacement at any time \(t\) is given by \(S = t^{3} - 6 t^{2} + 3 t + 4\) metres. The velocity when the acceleration is zero is:

1. \(4\) ms-1 2. \(-12\) ms−1
3. \(42\) ms−1 4. \(-9\) ms−1
Subtopic:  Acceleration |
 81%
From NCERT
PMT - 1994
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The position \(x\) of a particle varies with time \(t\) as \(x=at^2-bt^3\). The acceleration of the particle will be zero at time \(t\) equal to:

1. \(\dfrac{a}{b}\) 2. \(\dfrac{2a}{3b}\)
3. \(\dfrac{a}{3b}\) 4. zero
 
Subtopic:  Acceleration |
 84%
From NCERT
PMT - 1997
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A student is standing at a distance of \(50\) metres from the bus. As soon as the bus begins its motion with an acceleration of \(1\) ms–2, the student starts running towards the bus with a uniform velocity \(u\). Assuming the motion to be along a straight road, the minimum value of \(u\), so that the student is able to catch the bus is:
1. \(5\) ms–1
2. \(8\) ms–1
3. \(10\) ms–1
4. \(12\) ms–1

Subtopic:  Uniformly Accelerated Motion |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch