A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in the equilibrium state. The energy required to rotate it by \(60^{\circ}\) is \(W\)Now the torque required to keep the magnet in this new position is:
1. \(\frac{W}{\sqrt{3}}\) 
2. \(\sqrt{3} W\)
3. \(\frac{\sqrt{3} W}{2}\) 
4. \(\frac{2 W}{\sqrt{3}}\)

Subtopic:  Analogy between Electrostatics & Magnetostatics |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A short bar magnet of magnetic moment \(0.4\) JT–1 is placed in a uniform magnetic field of \(0.16\) T. The magnet is in stable equilibrium when the potential energy is:
1. \(0.064\) J
2. zero
3. \(-0.082\) J
4. \(-0.064\) J

Subtopic:  Analogy between Electrostatics & Magnetostatics |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A closely wound solenoid of \(2000\) turns and area of cross-section \(1.5\times10^{-4}\) m2 carries a current of \(2.0\) A. It is suspended through its center and perpendicular to its length, allowing it to turn in a horizontal plane in a uniform magnetic field \(5\times 10^{-2}\) tesla making an angle of \(30^{\circ}\) with the axis of the solenoid. The torque on the solenoid will be:
1. \(3\times 10^{-3}\) Nm 
2. \(1.5\times 10^{-3}\) Nm 
3. \(1.5\times 10^{-2}\) Nm 
4. \(3\times 10^{-2}\) Nm

Subtopic:  Analogy between Electrostatics & Magnetostatics |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Magnets \(A\) and \(B\) are geometrically similar but the magnetic moment of \(A\) is twice that of \(B\). If \(T_1\) and \(T_2\) be the time periods of the oscillation when their like poles and unlike poles are kept together respectively, then \(\frac{T_1}{T_2}\) will be:
1. \(\frac{1}{3}\)
2. \(\frac{1}{2}\)
3. \(\frac{1}{\sqrt{3}}\)
4. \(\sqrt{3}\)

Subtopic:  Analogy between Electrostatics & Magnetostatics |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A current-carrying loop is placed in a uniform magnetic field in four different orientations, I, II, III & IV. The decreasing order of potential energy is:

1. I > III > II > IV 2. I > II >III > IV
3. I > IV > II > III 4. III > IV > I > II

 
Subtopic:  Analogy between Electrostatics & Magnetostatics |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A thin rectangular magnet suspended freely has a period of oscillation equal to \(T\). Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation is \(T'\), then ratio \(\frac{T'}{T}\) is:
1. \(\frac{1}{4}\)
2. \(\frac{1}{2\sqrt{2}}\)
3. \(\frac{1}{2}\)
4. \(2\)

Subtopic:  Analogy between Electrostatics & Magnetostatics |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology