Which one of the following gives the value of the magnetic field according to Biot-Savart’s law?

1. \(\frac{{i} \Delta {l} \sin (\theta)}{{r}^2} \) 2. \(\frac{\mu_0}{4 \pi} \frac{i \Delta {l} \sin (\theta)}{r} \)
3. \(\frac{\mu_0}{4 \pi} \frac{{i} \Delta{l} \sin (\theta)}{{r}^2} \) 4. \(\frac{\mu_0}{4 \pi} {i} \Delta {l} \sin (\theta)\)
Subtopic:  Biot-Savart Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

To maximise the magnetic field caused by a small element of a current-carrying conductor at a point, the angle between the element and the line connecting the element to the point \(P\) must be:
1. \(0^{\circ}\) 2. \(90^{\circ}\)
3. \(180^{\circ}\) 4. \(45^{\circ}\)
Subtopic:  Biot-Savart Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

An element \(\Delta l=\Delta x \hat{i}\) is placed at the origin and carries a large current of \(I=10\) A (as shown in the figure). What is the magnetic field on the \(y\text-\)axis at a distance of \(0.5\) m? \((\Delta x=1~\text{cm})\)

 1. \(6\times 10^{-8}~\text{T}\) 2. \(4\times 10^{-8}~\text{T}\)
3. \(5\times 10^{-8}~\text{T}\) 4. \(5.4\times 10^{-8}~\text{T}\)
Subtopic:  Biot-Savart Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A straight wire carrying a current of \(12\) A is bent into a semi-circular arc of radius \(2.0\) cm as shown in the figure. Considering the magnetic field \(B\) at the centre of the arc, what will be the magnetic field due to the straight segments?

1. \(0\) 2. \(1.2\times 10^{-4}~\text{T}\)
3. \(2.1\times 10^{-4}~\text{T}\) 4. None of these
Subtopic:  Biot-Savart Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Which one of the following expressions represents Biot-Savart's law? Symbols have their usual meanings.

1. \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \times \hat r)}{4 \pi|\overrightarrow{\mathrm{r}}|^3}\\ \) 2. \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \times \hat r)}{4 \pi|\overrightarrow{\mathrm{r}}|^2} \)
3. \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \times \vec{r})}{4 \pi|\vec{r}|^3} \) 4. \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \cdot \vec{r})}{4 \pi|\overrightarrow{\mathrm{r}}|^3}\)
Subtopic:  Biot-Savart Law |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology