The following graph represents the \(T\text -V\) curves of an ideal gas (where \(T\) is the temperature and \(V\) the volume) at three pressures \(P_1, P_2\) and \(P_3\) compared with those of Charles's law represented as dotted lines.
                      
Then the correct relation is :
1. \(P_1>P_3>P_2 \) 2. \(P_2>P_1>P_3 \)
3. \( P_1>P_2>P_3\) 4. \(P_3 > P_2>P_1\)
Subtopic:  Ideal Gas Equation |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

An ideal gas at \(0^{\circ}\text{C}\) and atmospheric pressure \(P\) has volume \(V.\) The percentage increase in its temperature needed to expand it to \(3V\) at constant pressure is:
1. \(100\%\) 2. \(200\%\)
3. \(300\%\) 4. \(50\%\)
Subtopic:  Ideal Gas Equation |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The equilibrium state of a thermodynamic system is described by:
\(A.\) Pressure
\(B.\) Total heat
\(C.\) Temperature
\(D.\) Volume
\(E.\) Work done
 
Choose the most appropriate answer from the options given below:
1. \(A,B\) and \(E\) only
2. \(B,C\) and \(D\) only
3. \(A,B\) and \(C\) only
4. \(A,C\) and \(D\) only
Subtopic:  Ideal Gas Equation |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A container of volume \(200\) cm3 contains \(0.2\) mole of hydrogen gas and \(0.3\) mole of argon gas. The pressure of the system at temperature \(200\) K (\(R=8.3\) JK–1 mol–1) will be:
1. \( 6.15 \times 10^5 ~\text{Pa} \)
2. \( 6.15 \times 10^4 ~\text{Pa} \)
3. \( 4.15 \times 10^5 ~\text{Pa} \)
4. \( 4.15 \times 10^6 ~\text{Pa}\)
Subtopic:  Ideal Gas Equation |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The volume occupied by the molecules contained in \(4.5\) kg water at STP, if the molecular forces vanish away, is:
1. \(5.6\) m3
2. \(5.6\times10^{6}\) m3
3. \(5.6\times10^{3}\) m3
4. \(5.6\times10^{-3}\) m3
Subtopic:  Ideal Gas Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A cylinder contains hydrogen gas at a pressure of \(249~\text{kPa}\) and temperature \(27^\circ\text{C}.\) Its density is: (\(R=8.3~\text{J mol}^{-1} \text {K}^{-1}\))
1. \(0.2~\text{kg/m}^{3}\)
2. \(0.1~\text{kg/m}^{3}\)
3. \(0.02~\text{kg/m}^{3}\)
4. \(0.5~\text{kg/m}^{3}\)

Subtopic:  Ideal Gas Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

An ideal gas equation can be written as \(P = \dfrac{ρRT}{M_{0}}\) where \(\rho\) and \(M_{0}\) are respectively:
1. mass density, the mass of the gas.
2. number density, molar mass.
3. mass density, molar mass.
4. number density, the mass of the gas.

Subtopic:  Ideal Gas Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology