If the radius of a star is \(R\) and it acts as a black body, what would be the temperature of the star at which the rate of energy production is \(Q\)\(\left(\sigma~ \text{is Stefan-Boltzmann constant}\right)\)
1. \(\frac{Q}{4\pi R^2\sigma}\)
2. \(\left(\frac{Q}{4\pi R^2\sigma}\right )^{\frac{-1}{2}}\)
3. \(\left(\frac{4\pi R^2 Q}{\sigma}\right )^{\frac{1}{4}}\)
4. \(\left(\frac{Q}{4\pi R^2 \sigma}\right)^{\frac{1}{4}}\)

Subtopic:  Stefan-Boltzmann Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The total radiant energy per unit area, normal to the direction of incidence, received at a distance \(R\) from the centre of a star of radius \(r,\) whose outer surface radiates as a black body at a temperature \(T\) K is given by: (Where \(\sigma\) is Stefan’s constant):
1. \(\dfrac{\sigma r^{2}T^{4}}{R^{2}}\)

2. \(\dfrac{\sigma r^{2}T^{4}}{4 \pi R^{2}}\)

3. \(\dfrac{\sigma r^{2}T^{4}}{R^{4}}\)

4. \(\dfrac{4\pi\sigma r^{2}T^{4}}{R^{2}}\)

Subtopic:  Stefan-Boltzmann Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A black body at \(227^{\circ}~\mathrm{C}\) radiates heat at the rate of \(7~ \mathrm{cal-cm^{-2}s^{-1}}\).  At a temperature of \(727^{\circ}~\mathrm{C}\), the rate of heat radiated in the same units will be:
1. \(60\)
2. \(50\)
3. \(112\)
4. \(80\)

Subtopic:  Stefan-Boltzmann Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Assuming the sun to have a spherical outer surface of radius \(r,\) radiating like a black body at temperature \(t^\circ \text{ C},\) the power received by a unit surface of the earth (normal to the incident rays) at a distance \(R\) from the centre of the sun will be: (where \(\sigma\) is Stefan's constant)

1. \(\dfrac{4\pi r^2\sigma t^4}{R^2}\) 2. \(\dfrac{r^2\sigma(t+273)^4}{4\pi R^2}\)
3. \(\dfrac{16\pi^2r^2\sigma t^4}{R^2}\) 4. \(\dfrac{r^2\sigma(t+273)^4}{R^2}\)
Subtopic:  Stefan-Boltzmann Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A black body is at \(727^\circ\text{ C}.\) The rate at which it emits energy is proportional to:

1. \((727)^2\) 2. \((1000)^4\)
3. \((1000)^2\) 4. \((727)^4\)
Subtopic:  Stefan-Boltzmann Law |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology