3.4 Calculate the standard cell potentials of galvanic cell in which the following reactions take place:

(i) 2Cr(s) + 3Cd2+(aq) 2Cr3+(aq) + 3Cd

(ii) Fe2+(aq) + Ag+(aq) Fe3+(aq) + Ag(s)

Calculate the rGƟ and equilibrium constant of the reactions.

(i)
Step 1:

Calculate the value of  \(E_{cell}^{o}\) is as follows:
 

ECr3+/Cr=0.74 V

ECd2+/Cd=-0.40 V

The galvanic cell of the given reaction is depicted as:

Cr(s)|Cr3+(aq)||Cd2+(aq)|Cd(s)

Now, the standard cell potential is

Ecell=ER-EL

       = -0.40-(-0.74)

       =+0.34 V

Step 2:

Calculate the value of \(\Delta_{r} G^{o} \)
 is as follows:

rG=-nFEcell

In the given equation, n=6

F=96487 C mol-1  

Ecell=+0.34 V

Then, rG= -6 x 96487 C mol-1 x 0.34 V

=-196833.48 CV mol-1

=-196833.48 J mol-1

=-196.83 kJ mol-1


Step 3:

Again,

tG=-RT In K

tG=-2.303 RT In K

log K=-tG2.303 RT

=-196.83×1032.303×8.314×298

=34.496

 K=antilg (34.496)=3.13×1034
 

(ii) 

Step 2:

First calculate the value of \(E_{cell}^{o}\) is as follows:

EFe3+/Fe2+=0.77 V

EAg+/Ag=0.80 V

The galvanic cell of the given reaction is depicted as:

Fe2+(aq)|Fe3+(aq)||Ag+(aq)|Ag(s)

Now, the standard cell potential is

Ecell=ER-EL

=0.80-0.77

=0.03 V

Here, n=1

Step 2:

Then, tG=-nFEcell

=-1×96487 C mol-1 ×0.03 V

=-2894.61 J mol-1

= -2.89 kJ /mol  

Step 3:

Again, tG=-2.303 RT In K

 log K=-tG2.303 RT

=-2894.612.303×8.314×298

=0.5073

K=antilog (0.5073)

=3.2 (approximately)