2.51 The work function for the cesium atom is 1.9 eV. Calculate (a) the threshold wavelength and (b) the threshold frequency of the radiation. If the cesium element is irradiated with a wavelength of 500 nm, calculate the kinetic energy and the velocity of the ejected photoelectron.

It is given that the work function (W0) for the cesium atom is 1.9 eV.

(a) From the W0 = hcλ0 expression, we get:
λ0 = hcW0
Where λ0 = threshold
wavelength h = Planck’s
constant c = velocity of
radiation
Substituting the values in the given expression of (λ0):
Hence, the threshold wavelength is 653 nm.

(b) From the expression, W0 = hv0, we get:
v0 = W0h
Where v0 = threshold
frequency h = Planck’s
constant
Substituting the values in the given expression of v0:
v0 = 1.9 x 1.602 x 10-19 J6.626 x 10-34 Js
(1 eV = 1.602 × 10–19 J) v0 = 4.593 × 1014 s-1
Hence, the threshold frequency of radiation (v0) is 4.593 × 1014 s-1.

(c) According to the question:
The wavelength used in irradiation (λ) = 500 nm
Kinetic energy = h (ν – v0)

 = hc1λ - 1λ0
= 6.626 x 10-34 Js3.0 x 108 m/sλ0 - λλλ0
= 1.9878 x 10-26 Jm653 x 50010-9 m65350010-18 m2
 = 1.9878 x 10-26153 x 109653500

= 9.3149 × 10–20 J

The kinetic energy of the ejected photoelectron = 9.3149 × 10–20J

since K.E. = 12mv2 = 9.3149 x 10-20 J
v = 29.3149 x 10-20 J9.10939 x 10-31 kg
= 2.0451 x 1011 m2s-2

v = 4.52 × 105 m/s

Hence, the velocity of the ejected photoelectron (v) is 4.52 × 105 m/s.