The unit of length convenient on the nuclear scale is a fermi:1 f=10-15 m.  Nuclear sizes obey roughly the following empirical relation:

𝑟 = 𝑟0𝐴1/3

 

where r is the radius of the nucleus, A its mass number, and r0 is a constant equal to about, 1.2 f. Show that the rule implies that nuclear mass density is nearly constant for different nuclei. Estimate the mass density of the sodium nucleus. Compare it with the average mass density of a sodium atom obtained in Exercise. 2.27.

Let m is the average mass of proton or nucleon
Therefore Nuclear mas'
M=mA
And radius of nucleus,r=r0A1/3
Nuclear density, ρ=mA43πr0A1/33=3m4πr03
ρ=3×1.66×10-274×3.14×1.2×10-153
=2.29×1017 kgm-3
From last question2.27, density of sodium atom=0.58×103kgm-3
Nuclear mass densityAtomic mass density=2.30×10170.58×103=3.96×1014
Therefore Nuclear density is around  1015times the atomic density of matter.