For the one-dimensional motion, described by \(x = t - \sin t,\) the following statements are given.
(a) \(x(t)>0\) for all \(t>0\)
(b) \(v(t)>0\) for all \(t>0\)
(c) \(a(t)>0\) for all \(t>0\)
(d) \(v(t)\) lies between \(0\) and \(2\)


Choose the correct option:
1. (a), (c)
2. (b), (c)
3. (a), (d)
4. (b), (d)

(3) Hint: The first derivative of x gives velocity and the first derivative of velocity gives acceleration.

Step 1: Find the velocity and acceleration.

Given,

x=tsint velocity v=dxdt=ddt[tsint]=1cost Acceleration a=dvdt=ddt[1cost]=sint

Step 2: Put the different values of t to find the correct answer.

As acceleration             a > 0 for all t > 0
Hence,                     x(t) > 0 for all t > 0
                       Velocity  v= 1 - cos t
When                cos t = 1, velocity v = 0

Vmax=1(cost)min=1(1)=2vmin=1(cost)max=11=0

Hence, v lies between 0 and 2.

 Acceleration a=dvdt=sint

 When t=0;x=0,x=+1,a=0 When t=π2;x=1,v=0,a=1 When t=π;x=0,x=1,a=1 When t=2π;x=0,x=0,a=0