(a) | x(t)>0 for all t>0 |
(b) | v(t)>0 for all t>0 |
(c) | a(t)>0 for all t>0 |
(d) | v(t) lies between 0 and 2 |
Choose the correct option:
1. (a), (c)
2. (b), (c)
3. (a), (d)
4. (b), (d)
(3) Hint: The first derivative of x gives velocity and the first derivative of velocity gives acceleration.
Step 1: Find the velocity and acceleration.
Given,
x=t−sint velocity v=dxdt=ddt[t−sint]=1−cost Acceleration a=dvdt=ddt[1−cost]=sint
Step 2: Put the different values of t to find the correct answer.
As acceleration a > 0 for all t > 0
Hence, x(t) > 0 for all t > 0
Velocity v= 1 - cos t
When cos t = 1, velocity v = 0
Vmax=1−(cost)min=1−(−1)=2vmin=1−(cost)max=1−1=0
Hence, v lies between 0 and 2.
Acceleration a=dvdt=−sint
When t=0;x=0,x=+1,a=0 When t=π2;x=1,v=0,a=−1 When t=π;x=0,x=−1,a=1 When t=2π;x=0,x=0,a=0
© 2025 GoodEd Technologies Pvt. Ltd.