A box of 1.00 m3 is filled with nitrogen at 1.50 atm at 300 K. The box has a hole of an area of 0.010 mm2. How much time is required for the pressure to reduce to 0.10 atm, if the pressure outside is 1 atm?

Hint: The total no. of molecules will be equal to the difference of molecules going outside and coming inside.
Step 1: Find the no. of molecules colliding the wall in time interval t.
Given, the volume of the box, V=1.00 m3
Area=a=0.010 mm2
          =8.01×10-6m2
               =10-8 m2
          
Temperature outside = Temperature inside
Initial pressure inside the box = 1.50 atm.
Final pressure inside the box = 0.10 atm.
Assuming,
vix= Speed of nitrogen molecule inside the box along the x-direction.
ni = number of molecules per unit volume colliding the wall in a time interval of t
All the particles at a distance (vixt) will collide with the hole and the wall, the particle colliding along the hole will escape out reducing the pressure in the box.
Let area of the wall = A
The number of particles colliding in time t=12ni(vixt)A
12 is the factor because all the particles along x-direction are behaving randomly. Hence, half of these are colliding against the walls on either side.
Inside the box, vix2+viy2+viz2=vrms2
 vix2=vrms23                       (vix=viy=viz)
 or 
12mvrms2=32kBT
vrms=Root mean square velocity
KB=Boltzmann constant
T=Temperature

                     vrms2=3kBTm
                          vrms=3kBTm
[According to the kinetic theory of gases]
Now,                         vix2=vrms23=13×3kBTm
Or                              vix2=kBTm
 Number of particles colliding in time t=12nikBTmtA
Step 2: Find the difference of molecules going outside and coming inside.
If particles collide along the hole, they move out. Similarly, outside particles colliding along the hole will move inside.
If a = area of hole
Then, net particle flow in time t=12(ni-no)kBTmta
                                                                          [Temperatures inside and outside the box are equal]
                                           pV=μRTμ=pVRT
Let n= number density of nitrogen =μNAV=pNART                    μV=pRT
Let NA= Avogardro's number
If after time t, the pressure inside changes from p to p';
                                      ni=pNART
Step 3: Find the after which the pressure reduces to the final pressure.
Now, number of molecules gone out =niV-noV
                                                         =12(ni-no)kBTmta
          pNARTV-p'NARTV=12(p1-p2)NARTkBTmta
or            pNARTV-p'NARTV=12(p1-p2)NARTkBTmta
                           t=2p-p'p1-p2VamkBT
Putting the values from the data given,
                                 t=21.5-1.41.5-1.01×1.000.01×10-646.7×10-271.38×10-23×300
  =20.10.5110-84.71. 38×3×10-6
  =2151×108×10-3×46.74.14=25×10545.74.14
  =25×10511.28
  =25×3.358×105=6.7175×105=1.343×105s