The displacement of a particle varies with time according to the relation, \(y=a~\text{sin} \omega t+b~\text{cos} \omega t.\)

1. the motion is oscillatory but not SHM
2. the motion is SHM with amplitude \(a+b\)
3. the motion is SHM with amplitude \(a^{2}+b^{2}\)
4. the motion is SHM with amplitude \(\sqrt{a^{2}+b^{2}}\)
Hint: Apply the concept of the superposition principle.
 
Step 1: Find the combined equation of the motion.
According to the question, the displacement,
y=a sinωt+bcosωt
Let a=Asinϕ and b=Acosϕ
Now, a2+b2=A2sin2ϕ+A2cos2ϕ=A2A=a2+b2
y=A sinϕsinωt+A cosϕ cosωt=A sin (ωt+ϕ)
Step 2: Find the acceleration of the motion.
dydt=Aω cos(ωt+ϕ)
d2ydt2=-Aω2sin(ωt+ϕ)=-Ayω2=(-Aω2)y
       d2ydt2(-y)
Therefore, it is an equation of SHM with amplitude A=a2+b2
Hence, option (4) is the correct answer.