Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :

38Sulphur=2.48hhalf-life 38Cl=0.62hhalf-life 38Ar (stable)

Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = . At what value of t, would the number of counts be a maximum?

Hint: The rate of disintegration depends on the active nuclei.
Step 1: Find the decay rate of two nuclei.
Consider the chain of two decays.
38S2.48h 38Cl0.62h 38Ar
At time t, let 38S has N1(t) active nuclei and 38Cl has N2(t) active nuclei.
dN1dt=-λ1N1=rate of formation of Cl38.
Also, dN2dt=-λ2N2+λ1N1
But, N1=N0e-λ1t
dN2dt=λ1N0e-λ1t-λ2N2 .....(i)
Step 2: Find the no. of counts of 38Cl.
Multiplying by eλ2tdt and rearranging
eλ2t dN2+λ2N2eλ2tdt=λ1N0e(λ2-λ1)tdt
Integrating both sides:
N2eλ2t=N0λ1λ2-λ1e(λ2-λ1)t+C
Since at t=0, N2=0, C=-N0λ1λ2-λ1
So, N2eλ2t=N0λ1λ2-λ1e(λ2-λ1)t-1 ..............ii
Step 3: Find the condition when no. of counts of 38Cl is maximum.
For maximum count, dN2dt=0
λ1N0e-λ1t-λ2N2=0      [From Eq. (i)]
N0N2=λ2λ1eλ1t              [From Eq. (ii)]
eλ2t-λ2λ1·λ1(λ1-λ1)eλ1t [e(λ2-λ1)t-1]=0
or eλ2t-λ2(λ2-λ1)eλ2t+λ2(λ2-λ1)eλ1t=0
1-λ2(λ2-λ1)+λ2(λ2-λ1)e(λ1-λ2)t=0
λ2(λ2-λ1)e(λ1-λ2)t=λ2(λ2-λ1)-1
e(λ1-λ2)t=λ1λ2
Step 4: Find the time when no. of counts of 38Cl is maximum.
t=(logeλ1λ2)(λ1-λ2)
=loge(2.480.62)2.48-0.62
=loge41.86=2.303×2×0.30101.86          (λ=0.693T1/2)
=0.745 S
Note Do not apply directly the formula of radioactive. Apply formulae related to chain decay.