13.27 Consider the fission of \({ }_{92}^{238} \mathrm{U}\) by fast neutrons. In one fission event, no neutrons are emitted and the final end products, after the beta decay of the primary fragments, are \({ }_{58}^{140} \mathrm{Ce}\) and \({ }_{44}^{99} \mathrm{Ru}\). Calculate Q for this fission process. The relevant atomic and particle masses are

m(\({ }_{92}^{238} \mathrm{U}\)) =238.05079 u

m(\({ }_{58}^{140} \mathrm{Ce}\)) =139.90543 u

m(\({ }_{44}^{99} \mathrm{Ru}\)) = 98.90594 u

Hint: The Q-value is given by \(E=\Delta mc^2\)​.
Step 1: Write the fission reaction for \({ }_{92}^{238} \mathrm{U}\)
.
In the fission of U92238, 10 β-particles decay from the parent nucles. The nuclear reaction can be written as:
U92238 +n01C58140e+R4499u+10e-10
Step 2: Find the Q-value for the fission reaction.
It is given that:
Mass of U92238 nucleus, m1=238.05079 u
Mass of a C58140e nucleus, m2=139.90543 u
Mass of a R4499u nucleus, m3=98.90594 u
Mass of a neutron n01, m4=1.008665 u
Q=[m'(U92238)+mn01-m'C58140e-m'R4499u-10me] c2
where, m'=Represents the corresponding atomic masses of the nuclei.
m'=U92238=m1-92me,  m'C58140e=m2 - 58 me'  m'R4499u=m3-44 me and m'n01=m4
Q=[m1-92me+m4-m2+58me-m3+44me-10me]c2
=[m1+m4-m2-m3]c2
=[238.0507+1.008665-139.90543-98.90594]c2
=[0.247995 c2]u
But 1 u =931.5 Me V/c2
Q=0.247995×931.5=231.007 MeV
Hence, the Q-value of the fission process is 231.007 MeV.