13.15 The Q-value of a nuclear reaction A + b C + d is defined by Q = [ mA + mbmCmd]c2

where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

(i) \({ }_{1}^{1} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}\)

(ii) \({ }_{6}^{12} \mathrm{C}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{10}^{20} \mathrm{Ne}+{ }_{2}^{4} \mathrm{He} \)

Atomic masses are given to be

m () = 2.014102 u

m () = 3.016049 u

m () = 12.000000 u

m () = 19.992439 u

Hint: The Q-value of a reaction is given by \(Q=\Delta mc^2\).
(i)
Step 1:
Find the Q-value for the first reaction.
The given nuclear reaction is:
It is given that: \({ }_{1}^{1} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}\)
Atomic mass of mH11=1.007825 u
Atomic mass of mH13=3.016049 u
Atomic mass of mH12=2.014102 u
According to the question, the Q-value of the reaction can be written as:
Q=mH11+mH13-2mH12c2
   =1.00725+3.016049-2×2.014102c2
Q=-0.004905 c2u
But 1 u = 931.5 MeV/c2
Q=-0.004905×931.5=-4.5690 MeV
The negative Q-value of the reaction shows that the reaction is endothermic.
(ii)
Step 2: Find the Q-value for the second reaction.
The given nuclear reaction is:
It is given that:   \({ }_{6}^{12} \mathrm{C}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{10}^{20} \mathrm{Ne}+{ }_{2}^{4} \mathrm{He} \)  
Atomic mass of            mC612=12.0 u
Atomic mass of           mN1020e=19.992439 u
Atomic mass of         mH24e=4.002603 u
The Q-value of this reaction is given as:
Q=2mC612-mN1020e-mH24ec2
=2×12.0-19.992439-4.00203c2
=0.005531 c2u
=0.005531×931.5= 5.1521 MeV
The positive Q-value of the reaction shows that the reaction is exothermic.