Loading [MathJax]/jax/output/CommonHTML/jax.js

13.12 Find the Q-value and the kinetic energy of the emitted α-particle in the α-decay of (a) 22688Ra and (b) 22086Rn.

Given: m (22688Ra) = 226.02540 u, m (22286Rn) = 222.01750 u,

m (22086Rn) = 220.01137 u, m (21684Po) = 216.00189 u.

Hint: Q-value is given by mass defect as, E=Δmc2.
(a)
Step 1:
Find the reaction for α-decay of  22688Ra.
Alpha particle decay of R22688a emits a helium nucleus. As a result, its atomic mass number reduces to (226-4) 222 and its atomic number reduces to (88-2) 86. This is shown in the following nuclear reaction:
R22686aR22286a+H42e
Step 2: Find the Q-value and kinetic energy of α-particle in α-decay of  22688Ra.
Q-value of emitted α-particle=(Sum of initial mass - Sum of final mass)xc2
where, c=speed of light
It is given that:
m(R22686a)=226.02540 u
m(R22286n)=222.01750 u
m(H42e)=4.002603 u
Q-value=[226.02540-(222.01750+4.002603)]u c2=0.005297 u c2
But 1 u =931.5 MeV/c2
Q=0.005297×931.54.94 Mev
Kinetic energy of the α-particle=Mass number after decayMass number before decay×Q=222226×4.94=4.85 MeV
(b)
Step 3:
Find the reaction for α-decay of  22086Rn.
Alpha particle decay of 22086Rn
Rn22086P21684o+H4ee
Step 4: Find the Q-value and kinetic energy of α-particle in α-decay of  22086Rn.
It is given that:
Mass of R22086n=220.01137 u and mass of P21684o=216.00189 u
Q-value=[220.01137 -(216.0019+4.00260)]×931.5641 MeV
The kinetic energy of the α-particle =(220-4220)×6.41=6.29 MeV