13.10 The half-life of \({ }_{38}^{90} \mathrm{Sr}\) is 28 years. What is the disintegration rate of 15 mg of this isotope?

Hint: The rate of disintegration is given by: \(\frac{\mathrm{dN}}{\mathrm{dt}}=-\lambda \mathrm{N}\).
Step 1: Find the number of atoms present in 15 mg of \({ }_{38}^{90} \mathrm{Sr}\).
The half-life of Sr3890, t1/2=28 years
=28×365×24×60×60
=8.83×108s
Mass of the isotope, m = 15 mg
90 g of 3890 Sr atom contains  6.023×1023(Avogadro's number) atoms.
Therefore, 15 mg of Sr3890 contains atoms =6.023×1023×15×10-390=1.0038×1020
Step 2: Find the rate of integration of \({ }_{38}^{90} \mathrm{Sr}\).
Rate of disintegration,  dNdt=λN
Where,  λ=decay constant =0.6938.83×108S-1
Therefore,  dNdt=0.693×1.0038×10208.83×108=7.878×1010 atoms / s
Hence, the disintegration rate of 15 mg of the given isotope is 7.878x 1010 atoms/ s.