You may find the following data useful in solving the exercises:

e = 1.6×10–19C

N = 6.023×1023 per mole

1/(4πε0) = 9 × 109 N m2/C2

k = 1.381×10–230K–1

1 MeV = 1.6×10–13 

 1 u = 931.5 MeV/c2

1 year = 3.154×107 s

mH = 1.007825 u

mn = 1.008665 u

m() = 4.002603 u

me = 0.000548 u

13.1 (a) Two stable isotopes of lithium and have respective abundances of 7.5% and 92.5%. These isotopes have masses 6.01512 u and 7.01600 u, respectively. Find the atomic mass of lithium.

(b) Boron has two stable isotopes, and . Their respective masses are 10.01294 u and 11.00931 u, and the atomic mass of boron is 10.811 u. Find the abundances of and .

Hint: Atomic mass of an atom is weightage mass of its isotopes.
Step 1: Find the atmoc mass of Lithium atom.
(a) Mass of Li36 lititum isotpe, m1=6.01512 u
Mass of L37 litium isotope, m2=7.01600 u
Abundance of  Li37, n2=92.5%
The atomic mass of lithium atom is given as:
m=m1n1+m2n2n1+n2=6.01512×7.5+7.01600×92.57.5+92.5=6.940934 u
Step 2: Find the abundances of isotopes of Boron.
(b)
Mass of 510boron isotop, m1=10.01294 u
Mass of B511 boron isotope, m2=11.00931 u
Let the abundance of B511, n1=x%
Therefore, the abundance of B511,n2=(100-x)%
The atomic mass of boron = 10.81u. The atomic mass of Boron atom is given as:
m=m1n1+m2n2n1+n2
10.811=10.01294×x+11.00931×(100-x)x+(100-x)
1081.1=10.01294x+1100.931-11.00931x
x=19.8210.99637=19.89%
Therefore, 100-x=100%-19.89%=80.11%
Hence, the abundances of B510 is 19.89% and B511 is 80.11%