The first four spectral lines in the Lyman series of a H-atom are λ= 1218 Ao, 1028 Ao, 974.3 Ao and 951.4 Ao. If instead of Hydrogen, we consider Deuterium, calculate the shift in the wavelength of these lines.

Hint: The wavelength depends on the reduced mass.
Step 1: Find the relation between the wavelength and the reduced mass.
The total energy of the electron in the stationary state of the hydrogen atom is given by;
En=-me48n2ε02h2
where signs are as usual and 'm' that occurs in the Bohr formula is the reduced mass of electron and proton in the hydrogen atom.
By Bohr's model, if=Eni-Enf
On simplifying, νif=me48ε02h3(1nf2-1ni2)
Since, λ1μ
Thus, λif1μ      ..............(i)
where μ is the reduced mass. (here, μ is used in place of m)
Step 2: Fidn the reduced masses of hydrogen and deuterium.
Reduced mass for H=μH=me1+meM=me(1-meM)
Reduced mass for D=μD=me(1-me2M)=me(1-me2M)-1=me(1+me2M)
Step 3: Find the wavelength of deuterium.
If λH is the wavelength for hydrogen and λD is the wavelength for  deuterium,
λDλH=μHμD(1+me2M)-1(1-12×1840)          [from eq. (i)]
On substituting the values, we have λD=λH×(0.99973)
Thus, lines are 1217.7Å, 1027.7Å, 974.04Å, 951.143Å.