The mixture of a  pure liquid and a solution in a long vertical column  (i.e., horizontal dimensions<< vertical dimensions) produces diffusion of solute particles and hence a refractive index gradient along the vertical dimension. A ray of light entering the column at right angles to the vertical is deviated from its original path. Find the deviation in travelling a horizontal distance d<<h, the height of the column.

Hint: The deviation of light depends on the refractive index of the mixture.

Step 1: Use Snell's law.

Let us consider a portion of a ray between x and x+dx inside the liquid. Let the angle of incidence at x be θ and let it enter the thin column at height y. Because of the bending, it shall emerge at x+dx with an angle θ+dθ at a height y+dy.

                              

From Snell's law,
or                  μ(y) sin θ=μ(y)y+dysinθ+=μ(y)+dydy(sinθ cosdθ+cosθ sindθ)

As  is small, cosdθ=1 and sindθ=,
or                               μ(y)sin θ=μ(y) cosθdθ+dydysinθ
or                                       μ(y) cosθdθ=-dydy sinθ
                                                     =-μdydy tanθ
But                                                  tanθ=dxdy                                 (from the figure)
On solving, we have
                                                  = -1 μ dydx

Step 2: Solve this differential equation.
Solving this variable separable form of a differential equation,
                                                  θ= -1μ  dy0ddx=-1μ  dyd