Light with an energy flux of \(20~\text{W/cm}^2\) falls on a non-reflecting surface at normal incidence. If the surface has an area of \(30~\text{cm}^2\), the momentum delivered (for complete absorption) during \(30\) minutes is:
1. \(36\times10^{-5}~\text{kg-m/s}\)
2. \(36\times10^{-4}~\text{kg-m/s}\)
3. \(108\times10^{4}~\text{kg-m/s}\)
4. \(1.08\times10^{7}~\text{kg-m/s}\)

(b) Hint: The omentum transferred depends on the energy transferred to the wall.
Step 1: Given, energy flux, ϕ = 20 W/cm2
Area, A= 30 cm2
Time, t = 30 min = 30 x 60 sec
Now, the total energy falling on the surface in time is, U = ϕAt =20 x 30 x (30 x 60) J
Step 2: The momentum of the incident light = Uc
=20×30×(30×60)3×10836×10-4kg-ms-1
Step 3: Momentum of the reflected light = 0
 Momentum delivered to the surface=36×10-4-0=36×10-4kg-ms-1