Seawater at frequency ν=4×108 Hz has permittivity ε80ε0permeability μμ0 and resistivity ρ=0.25 Ω-m. Imagine a parallel plate capacitor immersed in seawater and driven by an alternating voltage source V(t)=V0sin(2πνt). What fraction of the conduction current density is the displacement current density?

Hint: The displacement current density depends on the variation of the electric field between the plates of the capacitor.
Step 1: Find the conduction current density.
Suppose the distance between the parallel plates is d and applied voltage V(t)=V0sin2πνt.
Thus, electric field,
                                     E=V0dsin(2πνt)
Now using Ohm's law,   J0=1ρVodsin(2πνt)
                                  =V0ρdsin(2πνt)=J0csin2πνt
Here,                           J0c=V0ρd
Step 2: Find the displacement current density.
Now the displacement current density is given as;
                                 J0=εdEdt=εddtV0dsin(2πνt)
                                   =2πνεV0dcos(2πνt)
                               =J0d cos(2πνt)
Where,                      J0d=2πνεVod
                            J0dJ0c=2πvεV0d.ρdV0=2πνερ
                                   =2π×80ε0ν×0.25=4πε0ν×10
                                  =10ν9×109=49