Show that the average value of radiant flux density S over a single period T is given by S = 120E02.

Hint: The radiant flux density is given by, S =1μ0(E×B)=c2 ε0(E×B)                     c=1μ0ε0
Step 1: Find the equation of the electric field and the magnetic field.
Suppose the electromagnetic wave be propagating along the x-axis. The electric field vector of the electromagnetic wave be along the y-axis and the magnetic field vector is along the z-axis. Therefore,
and  E=E0cos(kx-ωt)j^
B=B0cos(kx-ωt)k^
E×B=(E0×B0)cos2(kx-ωt)
Step 2: Find the radiant energy flux.
S=c2ε0(E×B)
=c2ε0(E0×B0)cos2(kx-ωt)k^
Step 3: Find the radiant energy flux for a cycle.
The average value of the magnitude of radiant flux density over a complete cycle is:
Sav=c2ε0E0×B01T0Tcos2(kx-ωt)dt
=c2ε0E0B0×1T×T2               0Tcos2(kx-ωt)dt=T2
Sav=c22ε0E0E0c                  As, c=E0B0
=c2ε0E02=c2×1c2μ0E02         c=1μ0ε0 or ε0=1c2μ0
Sav=E022μ0c, hence proved.