Question 6.4:

The potential energy function for a particle executing linear simple harmonic motion is given by V(x) =kx2/2, where k is the force constant of the oscillator. For k = 0.5 N/m, the graph of V(x) versus x is shown in Fig. 6.12. Show that a particle of total energy 1 J moving under this potential must ‘turn back’ when it reaches x = ± 2 m.


 

Given,
k=0.5 Nm-1
Total energy, E=1 J
The particle can go up to a maximum distance xm , where its total energy
changed in to elestic potential energy.
Hence,
12kxm2=E
 xm=2Ek=2×10.5
 xm=±2