4.36. Motion in two dimensions, in a plane, can be studied by expressing position, velocity, and acceleration as a vector in Cartesian coordinates A=Axi^+Ayj^ where i^ and j^ are unit vectors along x and y directions, respectively and Ax and Ay are corresponding components of A. Motion can also be studied by expressing vectors in circular polar coordinates as A= Arr^ + Aθθ^ where r ^= rr = cosθi^+sinθj^  and θ^=sinθi^+cosθj^ are unit vectors along the direction in which r and θ are increasing.

a) express i^ and j^ in terms of r^ and θ^.

b) show that both r^ and θ^ are unit vectors and are perpendicular to each other

c) show that  ddt(r^)=ωθ^, where ω=dθdt and ddt(θ^)=θr^

d) for a particle moving along a spiral given by r=aθr^ where a = 1 find dimensions of ‘a’

e) find velocity and acceleration in polar vector representation for a particle moving along spiral described in d) above


Hint: Velocity, v = drdt and acceleration, a = dvdt.

(a)Step 1: Express i^ and j^ in terms of r^ and θ^.

Given, unit vector

r^=cosθi^+sinθj^                              ...(i)θ^=sinθi^+cosθj^                              ...ii

Multiplying Eq. (i) by sinθ and Eq. (ii) with cosθ and adding

r^sinθ+θ^cosθ=sinθcosθi^+sin2θj^+cos2θj^sinθ.cosθi^=j^(cos2θ+sin2θ)=j^
r^sinθ+θcosθ=j^ By Eq. (i) ×cosθ Eq. (ii) ×sinθ(r^cosθθ^sinθ)=i^

Step 2: Use dot product to find the angle between r^ and θ^.

(b)

r^.θ^=(cosθi^+sinθj^)(sinθi^+cosθj^)=cosθsinθ+sinθcosθ=0
 θ=90 Angle between r^ and θ^.

Step 3: Find velocity.

(c)

 Given, r^=cosθi^+sinθj^
dr^dt=ddt(cosθi^+sinθj^)=sinθdti^+cosθdtj^=ω[sinθi^+cosθj^][θ=dt]

Step 4: Find the dimension of a using homogeneity principle.

(d)

 Given, r=r^, here, writing dimensions [r]=[a][θ][r^]L = [a] [a]=L=[M0L1T0]

Step 5: Find velocity and acceleration on the spiral path.

(e)

Given, a= 1 unit r=θr^=θ[cosθi^+sinθj^]
Velocity, v = drdt = dtr^+θdr^dt = dtr^+θddt[(cosθi^+sinθj^)]

              =dtr^+θ[(sinθi^+cosθj^)dt]=dtr^+θθ^ω=ωr^+ωθθ^

Acceleration,  a=ddt[ωr^+ωθθ^]=ddtdtr^+dt(θθ^)

                     =d2θdt2r^+dtdr^dt+d2θdt2θθ^+dtddt(θθ^)=d2θdt2r^+ω[sinθi^+sinθj^]+d2θdt2θθ^+ωddt(θθ^)=d2θdt2r^+ω2θ^+d2θdt2×θθ^+ω2θ^+ω2θ(r^)(d2θdt2ω2θ)r^+(2ω2+d2θdt2)θ^